Loading [MathJax]/jax/output/CommonHTML/jax.js
10.設(shè)a,b∈R+,如果x滿足lg(ax)•lg(bx)+1=0,則a的取值范圍是(0,1100]∪[100,+∞).

分析 把已知關(guān)于x的方程變形,利用△≥0配方得到(lga-lgb)2≥4,進(jìn)一步得到lga2lga2,從而求得\frac{a}的取值范圍.

解答 解:由lg(ax)•lg(bx)+1=0,得(lga+lgx)(lgb+lgx)+1=0.
即lg2x+(lga+lgb)lgx+lgalgb+1=0.
由△=(lga+lgb)2-4lgalgb-4=(lga-lgb)2-4≥0,
lga2lga2
∴0a1100a100
a的取值范圍是(0,1100]∪[100,+∞).
故答案為:(0,1100]∪[100,+∞).

點(diǎn)評 本題考查基本不等式的應(yīng)用,考查對數(shù)運(yùn)算性質(zhì),體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若圓x2+y2=4上有四個(gè)點(diǎn)到直線8x-6y+c=0的距離為1,則實(shí)數(shù)c的取值范圍是-10<c<10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=xe2x,(e=2.71828…是自然對數(shù)的底數(shù)).
(Ⅰ)求f(x)的單調(diào)區(qū)間及最大值;
(Ⅱ)設(shè)g(x)=xe2x+m,若g(x)在點(diǎn)(-12,g(-\frac{1}{2}})})處的切線過點(diǎn)(1,3e),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)={x3ax24x0|x2|+ax0恰有2個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是[-2,0)∪{-3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,BD為⊙O的直徑,AB=AC,AD交BC于E,AE=2,ED=4.
(I)求證:△ABE∽△ADB,并求AB的長;
(II)延長DB到F,使BF=BO,連接FA,那么直線FA與⊙O相切嗎?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=lnx,g(x)=lgx,h(x)=log3x,直線y=a(a<0)與這三個(gè)函數(shù)圖象的交點(diǎn)的橫坐標(biāo)分別是x1,x2,x3,則x1,x2,x3的大小關(guān)系是x2<x3<x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖所示,四邊形ABCD為菱形,矩形A1ACC1⊥平面ABCD,且DA=2,AA1=3,∠ADC=π3,E為線段A1C1的中點(diǎn),F(xiàn)為線段A1A上一點(diǎn).
(Ⅰ)證明:C1F⊥BD;
(Ⅱ)求二面角C-DE-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)a∈R,函數(shù)f(x)=ax2-lnx,g(x)=ex-ax.
(1)當(dāng)a=7時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若f(x)•g(x)>0對x∈(0,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.一位創(chuàng)業(yè)青年租用了一塊邊長為1百米的正方形田地ABCD來養(yǎng)蜂、產(chǎn)蜜與售蜜,他在正方形的邊BC,CD上分別取點(diǎn)E,F(xiàn)(不與正方形的頂點(diǎn)重合),連接AE,EF,F(xiàn)A,使得∠EAF=45°.現(xiàn)擬將圖中陰影部分規(guī)劃為蜂源植物生長區(qū),△AEF部分規(guī)劃為蜂巢區(qū),△CEF部分規(guī)劃為蜂蜜交易區(qū).若蜂源植物生長區(qū)的投入約為2×105元/百米2,蜂巢區(qū)與蜂蜜交易區(qū)的投入約為105元/百米2,則這三個(gè)區(qū)域的總投入最少需要多少元?

查看答案和解析>>

同步練習(xí)冊答案
关 闭