20.獨立性檢驗中,假設(shè)H0:變量X與變量Y沒有關(guān)系,則在H0成立的情況下,P(K2≥6.635)≈0.010表示的意義是( 。
A.變量X與變量Y有關(guān)系的概率為1%
B.變量X與變量Y有關(guān)系的概率為99.9%
C.變量X與變量Y沒有關(guān)系的概率為99%
D.變量X與變量Y有關(guān)系的概率為99%

分析 由題意利用獨立性檢驗的方法及意義,得出結(jié)論.

解答 解:由題意根據(jù)獨立性檢驗的方法,P(K2≥6.635)≈0.010
表示的意義是變量X與變量Y有關(guān)系的概率為99%,
故選:D.

點評 本題主要考查據(jù)獨立性檢驗的方法及意義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)p:實數(shù)x滿足x2+2ax-3a2<0(a>0),q:實數(shù)x滿足x2+2x-8<0,且?p是?q的必要不充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在D是直角△ABC斜邊BC上一點,$AC=\sqrt{3}DC$.
(Ⅰ)若∠DAC=30°,求角B的大;
(Ⅱ)若BD=2DC,且AD=4,求DC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.對大于或等于2的自然數(shù)m的n次方冪有如下分解式:22=1+3,32=1+3+5,42=1+3+5+7;23=3+5,33=7+9+11,43=13+15+17+19.
根據(jù)上述分解規(guī)律52=1+3+5+7+9,則53的分解中最大的數(shù)是29.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$cos(α-\frac{π}{3})=\frac{2}{3}$,$cos(β+\frac{π}{6})=-\frac{2}{3}$,α是銳角,β是鈍角,則sin(α-β)=(  )
A.$-\frac{1}{2}$B.-1C.$-\frac{{\sqrt{3}}}{6}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)正實數(shù)x,y,z滿足x2-3xy+4y2-z=0,則當(dāng)$\frac{z}{xy}$取得最小值時,x+2y-z的最大值為( 。
A.1B.$\frac{9}{8}$C.2D.$\frac{9}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求下列函數(shù)的定義域
(1)y=$\frac{\sqrt{{x}^{2}-3x+4}}{x}$;
(2)y=$\frac{1}{\sqrt{lo{g}_{0.5}(4x-3)}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.${(1+\sqrt{x})^{10}}$的展開式中x4的系數(shù)是45.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{4}x+1,x≤1}\\{lnx,x>1}\end{array}\right.$,則方程f(x)=ax恰有兩個不同的實數(shù)根時,實數(shù)a的取值范圍是(  )
A.(0,$\frac{1}{e}$)B.[$\frac{1}{4}$,$\frac{1}{e}$)C.(0,$\frac{1}{4}$]D.($\frac{1}{4}$,e)

查看答案和解析>>

同步練習(xí)冊答案