分析 無(wú)窮等比數(shù)列{an}的各項(xiàng)和為A,前n項(xiàng)和為Sn,公比為q,0<|q|≤1,q≠1.可得A=$\frac{{a}_{1}}{1-q}$,Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$,由題意可得:an=k(A-Sn),代入化為:k=$\frac{q(1-q)}{{q}^{n}}$,分類(lèi)討論即可得出.
解答 解:無(wú)窮等比數(shù)列{an}的各項(xiàng)和為A,前n項(xiàng)和為Sn,公比為q,0<|q|≤1,q≠1.
則A=$\frac{{a}_{1}}{1-q}$,Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$,
由題意可得:an=k(A-Sn),
∴a1q=k($\frac{{a}_{1}}{1-q}$-$\frac{{a}_{1}(1-{q}^{n})}{1-q}$),
化為:k=$\frac{q(1-q)}{{q}^{n}}$,
1>q>0時(shí),k>0,n→+∞時(shí),k→+∞.
-1≤q<0時(shí),可得:n為偶數(shù)時(shí),k∈(-∞,-2];n為奇數(shù)時(shí),k>0.
∴k∈(-∞,-2]∪(0,+∞).
綜上可得:k∈(-∞,-2]∪(0,+∞).
故答案為:(-∞,-2]∪(0,+∞).
點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式及其性質(zhì)、極限性質(zhì),考查了分類(lèi)討論方法、推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=$\frac{1}{x}$ | B. | y=-x2+1 | C. | y=lg|x| | D. | y=3x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com