6.已知an=$\frac{2}{n(n+1)}$,則數(shù)列{an}的前100項(xiàng)和S100=( 。
A.$\frac{100}{101}$B.$\frac{200}{101}$C.$\frac{99}{100}$D.$\frac{198}{100}$

分析 將an=$\frac{2}{n(n+1)}$,轉(zhuǎn)換成,an=2($\frac{1}{n}$-$\frac{1}{n+1}$),采用裂項(xiàng)法求得S100

解答 解:an=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
{an}的前100項(xiàng)和,S100=a1+a2+a3+…+a100
=2[(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{100}$-$\frac{1}{101}$)],
=2(1-$\frac{1}{101}$),
=$\frac{200}{101}$.
故答案選:B.

點(diǎn)評(píng) 本題考查采用裂項(xiàng)法求數(shù)列的前n項(xiàng)和,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若f(x)=$\frac{\sqrt{{a}^{2}-{x}^{2}}}{|x+a|-a}$是奇函數(shù),則實(shí)數(shù)a的取值范圍為(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)直線y=x,y=-x與直線x=3圍成一個(gè)三角形區(qū)域(含邊界),則表示該區(qū)域的不等式組是( 。
A.$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{0≤x≤3}\end{array}\right.$B.$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤0}\\{0≤x≤3}\end{array}\right.$
C.$\left\{\begin{array}{l}{x-y≤0}\\{x+y≤0}\\{0≤x≤3}\end{array}\right.$D.$\left\{\begin{array}{l}{x-y≤0}\\{x+y≥0}\\{0≤x≤3}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知${a_1}=1,{a_n}+{a_{n+1}}={({\frac{1}{2}})^n}$,令Tn=a1+2a2+22a3+…+2n-1an,類(lèi)比教材中求等比數(shù)列的前n項(xiàng)和的方法,可得3Tn-2nan=2n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)數(shù)列{an}的各項(xiàng)均為正整數(shù),其前n項(xiàng)和為Sn,我們稱(chēng)滿足條件“對(duì)任意的m,n∈N*,均有(n-m)Sn+m=(n+m)(Sn-Sm)”的數(shù)列{an}為“L數(shù)列”.現(xiàn)已知數(shù)列{an}為“L數(shù)列”,且a2016=3000,則an=984+n或3000.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=-$\frac{a}{π}$sinπx,且$\lim_{h→0}\frac{f(1+h)-f(1)}{h}$=2,則a的值為( 。
A.-2B.2C.D.-2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)x>0,y>0,若log23是log2x與log2y的等差中項(xiàng),則$\frac{1}{x}$+$\frac{1}{y}$的最小值為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.對(duì)于函數(shù)f(x)=x|3x-x2|+1,有( 。
A.極大值為f(2)=5,極小值為f(3)=1,f(-1)=-3
B.極大值為f(2)=5,極小值為f(3)=f(0)=1
C.極大值為f(2)=5,極小值為f(3)=1
D.極大值為f(2)=5,極小值為f(0)=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知Sn,Tn分別為數(shù)列{$\sqrt{1+\frac{1}{{n}^{2}}+\frac{1}{(n+1)^{2}}}$}與{$\frac{{2}^{n}+1}{{2}^{n}}$}的前n項(xiàng)和,若Sn>T10+1013,則n的最小值為( 。
A.1023B.1024C.1025D.1026

查看答案和解析>>

同步練習(xí)冊(cè)答案