分析 利用待定系數(shù)法建立方程關(guān)系,解方程組即可.
解答 解:由題意設(shè)f(x)=ax+b,(a≠0).
∵f(x)滿足3f(x+1)-2f(x-1)=2x+17,
∴3[a(x+1)+b]-2[a(x-1)+b]=2x+17,
化為ax+(5a+b)=2x+17,
∴$\left\{\begin{array}{l}{a=2}\\{5a+b=17}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=2}\\{b=7}\end{array}\right.$.
∴f(x)=2x+7.
則f(x+1)=2(x+1)+7=2x+9.
點評 本題主要考查函數(shù)解析式的求解,利用“待定系數(shù)法”求一次函數(shù)的解析式是解決本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 9 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 75° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 63 | B. | 31 | C. | 15 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
質(zhì)量指標值分組 | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) | [60,70) |
頻數(shù) | 2 | 3 | 4 | 5 | 4 | 2 |
質(zhì)量指標值分組 | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) | [60,70) |
頻數(shù) | 0.15 | 0.2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=|lgx| | B. | y=2-|x| | C. | y=|$\frac{1}{x}$| | D. | y=lg|x| |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com