7.設(shè)A={x|-1≤x≤a},(a>-1),B={y|y=x+1,x∈A}.C={y|y=x2,x∈A},若 B=C,求a的值.

分析 先求出集合B,C,需要分類討論,再根據(jù)集合相等即可求出a的值.

解答 解:∵A={x|-1≤x≤a},(a>-1),
∴B={y|y=x+1,x∈A}=[0,a+1],
當(dāng)-1<a≤1時,C={y|y=x2,x∈A}=[0,1],
∵B=C,
∴a+1=1,解得a=0;
當(dāng)a>1時,C={y|y=x2,x∈A}=[0,a2],
∵B=C,
∴a+1=a2,解得a=$\frac{1-\sqrt{5}}{2}$(舍去),a=$\frac{1+\sqrt{5}}{2}$;
綜上所述a的值為0,或$\frac{1+\sqrt{5}}{2}$.

點評 本題考查了集合相等的應(yīng)用問題,也考查了解方程的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在四棱錐P-ABCD中,PA⊥面ABCD,AB⊥BC,AB⊥AD.且PA=AB=BC=$\frac{1}{2}$AD=1,請用學(xué)習(xí)的有關(guān)向量的知識求出PB與CD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知an=$\left\{\begin{array}{l}{\frac{{3}^{n}-{2}^{n}}{{3}^{n}+{2}^{n}},n≤2014}\\{\frac{{2}^{n}-{3}^{n}}{{2}^{n}+{3}^{n}},n≥2015}\end{array}\right.$,則$\underset{lim}{n→∞}$an=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,求f(x),f(x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)y=f(x)的定義域是[-2,4],則函數(shù)g(x)=f(x+1)+f(-x)的定義域是( 。
A.[-4,4]B.[-2,2]C.[-3,2]D.[2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知拋物線C的方程:x2=2py(p>0).
(1)設(shè)AB是過拋物線焦點F的弦,A(x1,y1),B(x2,y2).
①證明:y1y2為定值,并求出此定值;
②證明$\frac{1}{|A{F}_{1}|}$+$\frac{1}{|A{F}_{2}|}$為定值,并求出此定值:
③試判斷以AB為直徑的圓與準(zhǔn)線的位置關(guān)系并加以證明:
④證明:過A,B分別作拋物線的切線,則兩條切線的交點T一定在準(zhǔn)線上:
(2)當(dāng)p=2時,直線y=1交拋物線于A.B兩點.已知P(0,-1),Q(x0,y0)(-2≤x0≤2)是拋物線C上一動點,拋物線C在點Q處的切線為l,l與PA,PB分別交于點D,E,求△QAB與△PDE的面積之比:
(3)當(dāng)p=$\frac{1}{2}$時,若拋物線C上存在關(guān)于直線l:y=kx+1對稱的兩點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知等差數(shù)列{an}的前n項和是Sn,若M,N,P三點共線,O為坐標(biāo)原點,且$\overrightarrow{ON}$=a15$\overrightarrow{OM}$+a6$\overrightarrow{OP}$(直線MP不過點O),則S20等于10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知定義在R上的函數(shù)f(x),對于任意實數(shù)x,y都滿足f(x+y)=f(x)•f(y),且f(1)≠0,當(dāng)x>0時,f(x)>1
(1)求f(0)的值;
(2)證明f(x)在(-∞,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖輸入a0=0,a1=1,a2=2,a3=3,x0=-2,它輸出的結(jié)果S是( 。
A.-18B.6C.-3D.9

查看答案和解析>>

同步練習(xí)冊答案