6.求曲線y=${∫}_{0}^{x}$$\sqrt{3-{t}^{2}}$dt從x=0至x=$\sqrt{3}$所對(duì)應(yīng)的曲線的弧長(zhǎng).

分析 設(shè)y=$\sqrt{3-{t}^{2}}$,y≥0,化為y2+t2=3(y≥0),
該曲線表示以原點(diǎn)為圓心,$\sqrt{3}$為半徑的上半圓,求出周長(zhǎng)即可.

解答 解:設(shè)y=$\sqrt{3-{t}^{2}}$,y≥0,
則y2+t2=3(y≥0),
該曲線表示以原點(diǎn)為圓心,$\sqrt{3}$為半徑的上半圓,如圖所示;

所以y=${∫}_{0}^{x}$$\sqrt{3-{t}^{2}}$dt=$\frac{πd}{4}$=$\frac{\sqrt{3}π}{2}$.

點(diǎn)評(píng) 本題考查了定積分的集合意義與應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.某程序框圖如圖所示,若輸入的n等于($\sqrt{x}$+$\frac{2}{{x}^{2}}$)5展開(kāi)式中的常數(shù)項(xiàng),則輸出的結(jié)果是(  )
A.30B.28C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=(-1,0),$\overrightarrow{c}$=($\sqrt{3}$,k),若2$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{c}$垂直,則k=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)$f(x)=cos(ωx+φ-\frac{π}{2})(ω>0\;,\;|φ|<\frac{π}{2})$的部分圖象如圖所示,則$y=f(x+\frac{π}{6})$取得最小值時(shí)x的集合為( 。
A.$\{x|x=2kπ-\frac{π}{3}\;,\;k∈Z\}$B.$\{x|x=2kπ-\frac{π}{6}\;,\;k∈Z\}$C.$\{x|x=kπ-\frac{π}{3}\;,\;k∈Z\}$D.$\{x|x=kπ-\frac{π}{6}\;,\;k∈Z\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)m、n是兩條不同的直線,α、β是兩個(gè)不同的平面,則下列命題不正確的是( 。
A.若m⊥n,m⊥α,n?α則n∥αB.m∥α,α⊥β,則m⊥β
C.m⊥β,α⊥β,則m∥α或m?αD.m⊥n,m⊥α,n⊥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F,過(guò)拋物線上一點(diǎn)P作拋物線C的切線l交x軸于點(diǎn)D,交y軸于點(diǎn)Q,當(dāng)|FD|=2時(shí),∠PFD=60°.
(1)判斷△PFQ的形狀,并求拋物線C的方程;
(2)已知點(diǎn)M(2,2),若拋物線上異于點(diǎn)P的不同兩點(diǎn)A,B滿(mǎn)足$\overrightarrow{AM}$+$\overrightarrow{BM}$=0,且經(jīng)過(guò)A,B,P三點(diǎn)的圓和拋物線在點(diǎn)P處有相同的切線,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)φ(x)=sinx-kx(k∈R).
(I)若函數(shù)φ(x)在x=0處的切線與y軸垂直,求實(shí)數(shù)k的值;
(Ⅱ)若函數(shù)φ(x)在R內(nèi)單調(diào),求實(shí)數(shù)k的取值范圍;
(Ⅲ)當(dāng)k=$\frac{1}{2}$時(shí),求函數(shù)y=φ(2x)在x∈[-$\frac{π}{2}$,$\frac{π}{2}$]上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知正四棱錐的底面邊長(zhǎng)為4cm,高為$\sqrt{5}cm$,則該四棱錐的側(cè)面積是24cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.函數(shù)f(x)=Asin(ωx+α)(A>0,ω>0,-$\frac{π}{2}$<α<$\frac{π}{2}$)的最小正周期是π,且當(dāng)x=$\frac{π}{6}$時(shí)f(x)取得最大值3.
(1)求f(x)的解析式及單調(diào)增區(qū)間;
(2)若x0∈(0,2π],且f(x0)=$\frac{3}{2}$,求x0

查看答案和解析>>

同步練習(xí)冊(cè)答案