15.已知正四棱錐的底面邊長為4cm,高為$\sqrt{5}cm$,則該四棱錐的側(cè)面積是24cm2

分析 由正四棱錐P-ABCD的底面邊長為4cm,高PO=$\sqrt{5}cm$,得到OE=2cm,斜高PE=3cm,由此能求出該四棱錐的側(cè)面積.

解答 解:如圖,正四棱錐P-ABCD的底面邊長為4cm,高PO=$\sqrt{5}cm$,
∴OE=2cm,斜高PE=$\sqrt{P{O}^{2}+O{E}^{2}}$=$\sqrt{5+4}$=3cm,
∴該四棱錐的側(cè)面積是:
$S=4×(\frac{1}{2}×4×3)$=24(cm2).
故答案為:24.

點評 本題考查正四棱錐的側(cè)面積的求法,考查正四棱錐等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知x與y之間的一組數(shù)據(jù):
X0134
Y1357
則y與x的線性回歸方程為y=bx+a必過點(2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求曲線y=${∫}_{0}^{x}$$\sqrt{3-{t}^{2}}$dt從x=0至x=$\sqrt{3}$所對應(yīng)的曲線的弧長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直線l1:$\sqrt{3}$x+$\sqrt{10}$y-4=0為曲線C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一條切線,直線l2:x-2y-4=0為曲線C2:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{2^{2}}$=1的一條切線.求曲線C1,C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知雙曲線C的方程為:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0),且離心率e=$\frac{5}{4}$,則雙曲線C的漸近線方程為( 。
A.4x±y=0B.4x±3y=0C.3x±4y=0D.x±y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.正方體ABCD-A1B1C1D1中,M,N分別是棱BC,CC1上不與正方體頂點重合的動點,用平面AMN截正方體,下列關(guān)于截面的說法正確的有①②.
①若BM=C1N,則截面為等腰梯形
②若BM=CM,且$CN>\frac{1}{2}C{C_1}$時,截面為五邊形
③截面的面積存在最大值
④截面的面積存在最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.點P極坐標(biāo)為(2,$\frac{5π}{6}$),則它的直角坐標(biāo)是( 。
A.(1,-$\sqrt{3}$)B.(-1,$\sqrt{3}$)C.($\sqrt{3}$,-1)D.(-$\sqrt{3}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若至少存在一個x,使得方程lnx-mx=x(x2-2ex)成立,則實數(shù)m的取值范圍為(-∞,$\frac{1}{e}+{e}^{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)命題p:不等式0<log3x≤1的解集為A,命題q:不等式x-a≤0的解集為B,若p是q的充分而非必要條件,則實數(shù)a的取值范圍是[3,+∞).

查看答案和解析>>

同步練習(xí)冊答案