17.已知函數(shù)$f(x)=cos(ωx+φ-\frac{π}{2})(ω>0\;,\;|φ|<\frac{π}{2})$的部分圖象如圖所示,則$y=f(x+\frac{π}{6})$取得最小值時(shí)x的集合為( 。
A.$\{x|x=2kπ-\frac{π}{3}\;,\;k∈Z\}$B.$\{x|x=2kπ-\frac{π}{6}\;,\;k∈Z\}$C.$\{x|x=kπ-\frac{π}{3}\;,\;k∈Z\}$D.$\{x|x=kπ-\frac{π}{6}\;,\;k∈Z\}$

分析 由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的最大值,再利用正弦函數(shù)的最值,求得$y=f(x+\frac{π}{6})$取得最小值時(shí)x的集合.

解答 解:根據(jù)函數(shù)$f(x)=cos(ωx+φ-\frac{π}{2})(ω>0\;,\;|φ|<\frac{π}{2})$=sin(ωx+φ) 的部分圖象,可得$\frac{1}{4}$•$\frac{2π}{ω}$=$\frac{π}{3}$-$\frac{π}{12}$,∴ω=2.
再根據(jù)五點(diǎn)法作圖可得2•$\frac{π}{12}$+φ=0,∴φ=-$\frac{π}{6}$,∴f(x)=sin(2x-$\frac{π}{6}$).
則$y=f(x+\frac{π}{6})$=sin(2x+$\frac{π}{6}$) 取得最小值時(shí),應(yīng)有2x+$\frac{π}{6}$=2kπ-$\frac{π}{2}$,即x=kπ-$\frac{π}{3}$,k∈Z,
故此時(shí),x的集合為{x|x=kπ-$\frac{π}{3}$,k∈Z},
故選:C.

點(diǎn)評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由周期求出ω,由五點(diǎn)法作圖求出φ的值;還考查了正弦函數(shù)的最大值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓C:x2+y2-6x-8y+21=0.
(1)若直線l1過定點(diǎn)A(1,1),且與圓C相切,求l1的方程;
(2)若圓D的半徑為3,圓心在直線l2:x-y+2=0上,且與圓C外切,求圓D的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知x與y之間的一組數(shù)據(jù):
X0134
Y1357
則y與x的線性回歸方程為y=bx+a必過點(diǎn)(2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x+y≥0\\ x≤0\end{array}\right.$則2x+y的最小值為( 。
A.$-\frac{1}{2}$B.0C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.學(xué)校組織學(xué)生參加某項(xiàng)比賽,參賽選手必須有很好的語言表達(dá)能力和文字組織能力.學(xué)校對10位已入圍的學(xué)生進(jìn)行語言表達(dá)能力和文字組織能力的測試,測試成績分為A,B,C三個(gè)等級,其統(tǒng)計(jì)結(jié)果如表:

語言表達(dá)能力
文字組織能力
ABC
A220
B1a1
C01b
由于部分?jǐn)?shù)據(jù)丟失,只知道從這10位參加測試的學(xué)生中隨機(jī)抽取一位,抽到語言表達(dá)能力或文字組織能力為C的學(xué)生的概率為$\frac{3}{10}$.
( I)求a,b的值;
( II)從測試成績均為A或 B的學(xué)生中任意抽取2位,求其中至少有一位語言表達(dá)能力或文字組織能力為A的學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.圓x2+y2-2mx-8y+13=0與直線x+y-1=0有公共點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.$[3-2{\sqrt{3}_{\;}}{,_{\;}}+∞)$B.[3,4]
C.$[-2{\sqrt{3}_{\;}}{,_{\;}}2\sqrt{3}]$D.$(-{∞_{\;}}{,_{\;}}3-2\sqrt{3}]∪[3+2{\sqrt{3}_{\;}}{,_{\;}}+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求曲線y=${∫}_{0}^{x}$$\sqrt{3-{t}^{2}}$dt從x=0至x=$\sqrt{3}$所對應(yīng)的曲線的弧長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直線l1:$\sqrt{3}$x+$\sqrt{10}$y-4=0為曲線C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一條切線,直線l2:x-2y-4=0為曲線C2:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{2^{2}}$=1的一條切線.求曲線C1,C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若至少存在一個(gè)x,使得方程lnx-mx=x(x2-2ex)成立,則實(shí)數(shù)m的取值范圍為(-∞,$\frac{1}{e}+{e}^{2}$].

查看答案和解析>>

同步練習(xí)冊答案