已知函數(shù)f(x)=sin(π-x),x∈R.
(1)求函數(shù)f2(x)+cos2(π+x)的值;
(2)若f(α)=
3
5
,α∈[0,
π
2
],求f(α-
π
6
)的值.
考點:兩角和與差的正弦函數(shù),三角函數(shù)的化簡求值
專題:計算題,三角函數(shù)的求值
分析:(1)利用誘導公式,結合同角三角函數(shù)關系,即可求解;
(2)利用同角三角函數(shù)關系,結合兩角和與差的正弦函數(shù)公式,即可求解.
解答: 解:(1)∵sin(π-x)=sinx,cos(π+x)=-cosx…(2分)
∴f2(x)+cos2(π+x)=sin2x+(-cosx)2=sin2x+cos2x=1…(5分)
(2)由于f(x)=sinx.
∵f(α)=sinα,∴sinα=
3
5
…(6分)
α∈[0,
π
2
]
,∴cosα=
1-(
3
5
)
2
=
4
5
…(8分)
f(α-
π
6
)=sin(α-
π
6
)=sinαcos
π
6
-cosαsin
π
6
=
3
5
3
2
-
4
5
1
2
=
3
3
-4
10

f(α)=
3
3
-4
10
…(12分)
點評:本題考查兩角和與差的正弦函數(shù)公式,考查同角三角函數(shù)關系,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設向量
m
=2
a
-3
b
,
n
=4
a
-2
b
,
p
=6
a
-
b
,則
p
m
,
n
表示為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,D是△ABC邊BC的中點,
BA
=
a
、
AC
=
b
,已知
AD
a
b
,則(  )
A、λ=μ=
1
2
B、λ=-
1
2
,μ=
1
2
C、λ=μ=-
1
2
D、λ=
1
2
,μ=-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下判斷,正確的是(  )
A、當0<x<2時,因為(2-x)(2-x)x≤(
2-x+2-x+x
3
3,當2-x=x時等號成立,所以(2-x)(2-x)x的最大值為(2-1)(2-1)×1=1
B、|sinθ+
2
sinθ
|(θ≠kπ,k∈Z)的最小值為2
2
C、若實數(shù)x,y,z滿足xyz=1,則x+y+z的最小值為3
D、若?>0,|x-a|<?,|y+b|<?,則|2x+y-2a+b|<3?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-(2a+1)x+alnx.
(Ⅰ)當a=1時,求函數(shù)f(x)的增區(qū)間;
(Ⅱ)討論函數(shù)f(x)在區(qū)間[1,e]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(1,2),B(2,3),C(-2,5).
(1)求證:
AB
AC

(2)若向量
a
=(1,-2)可表示為
a
=m
AB
+n
AC
,求實數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的一個焦點將長軸分成2:1的兩個部分,且經(jīng)過點(-3
2
,4),求橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知線段AB的端點B的坐標為(1,3),端點A在圓C:(x+1)2+y2=4上運動.
(1)求線段AB的中點M的軌跡;
(2)過B點的直線L與圓C有兩個交點A,D.當CA⊥CD時,求L的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2014年春節(jié)期間,高速公路車輛劇增,高速公路管理測控中心在一特定位置從七座以下小型汽車中按先后順序,每間隔50輛就抽取一輛的抽樣方法抽取40輛進行電子測速調查,將它們的車速(km/h)分成六段[80,85),[85,90),[90,95),[95,100),[100,105),[105,110)后得到如圖的頻率分布直圖.
(1)測控中心在采樣中,用到的是什么抽樣方法?并估計這40輛車車速的平均數(shù);
(2)從車速在[80,90)的車輛中任抽取2輛,求抽出的2輛車中車速在[85,90)的車輛數(shù)的概率.參考數(shù)據(jù):82.5×0.01+87.5×0.02+92.5×0.04+97.5×0.06+102.5×0.05+107.5×0.02=19.4.

查看答案和解析>>

同步練習冊答案