分析 (1)直接由數列遞推式結合a1=1求得a2,a3,a4的值,猜測an,然后利用數學歸納法證明;
(2)比較3an與(n-1)2n+2n2的大小,即比較3n與(n-1)2n+2n2的大小,通過比較n=1,2,3,4,5時,兩個代數式的大小,猜想結論,利用數學歸納法證明即可.
解答 解:(1)由an+1=$\frac{(n+2){a}_{n}^{2}-{na}_{n}+n+1}{{a}_{n}^{2}+1}$,且a1=1,
得${a}_{2}=\frac{3×{1}^{2}-1×1+2}{2}=2$,
${a}_{3}=\frac{4×{2}^{2}-2×2+3}{5}=3$,
${a}_{4}=\frac{5×{3}^{2}-3×3+4}{10}=4$.
由上猜測an=n.
下面用歸納法證明:
當n=1時,a1=1,結論成立;
假設當n=k時結論成立,即ak=k,
則當n=k+1時,${a}_{k+1}=\frac{(k+2)•{{a}_{k}}^{2}-k{a}_{k}+k+1}{{{a}_{k}}^{2}+1}$=$\frac{(k+2)•{k}^{2}-{k}^{2}+k+1}{{k}^{2}+1}$
=$\frac{{k}^{3}+{k}^{2}+k+1}{{k}^{2}+1}=\frac{k({k}^{2}+1)+{k}^{2}+1}{{k}^{2}+1}=\frac{(k+1)({k}^{2}+1)}{{k}^{2}+1}=k+1$.
∴當n=k+1時,結論成立.
綜上,an=n;
(2)3an =3n,
當n=1時,3n>(n-1)2n+2n2;
當n=2,3時,3n<(n-1)2n+2n2;
當n=4,5時,3n>(n-1)2n+2n2
猜想:當n≥4時,3n>(n-1)2n+2n2,
下面用數學歸納法證明:
由上述過程可知,n=4時結論成立,
假設當n=k,(k≥4)時結論成立,即3k>(k-1)2k+2k2,
兩邊同乘以3得:3k+1>3[(k-1)2k+2k2]=k2k+1+2(k+1)2+[(k-3)2k+4k2-4k-2].
而(k-3)2k+4k2-4k-2=(k-3)2k+4(k2-k-2)+6=(k-3)2k+4(k-2)(k+1)+6>0.
∴3k+1>((k+1)-1)2k+1+2(k+1)2 .
即n=k+1時結論也成立,
∴當n≥4時,3n>(n-1)2n+2n2成立.
點評 本題考查數列遞推式,考查了數列的函數特性,訓練了利用數學歸納法證明與自然數有關的命題,是中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | m<-1 | B. | 0<m<1 | C. | m>1 | D. | m≥1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-1,1) | B. | (0,1) | C. | (-1,0)∪(0,1) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com