【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)),.

(1)當(dāng)時(shí),求函數(shù)的極小值;

(2)若當(dāng)時(shí),關(guān)于的方程有且只有一個(gè)實(shí)數(shù)解,求的取值范圍.

【答案】(1)0(2)

【解析】

(1)當(dāng)時(shí),,, 令 ,可得,列表判斷兩邊的符號(hào),根據(jù)極值的定義可得結(jié)果;(2)化簡(jiǎn),求得,,設(shè),可得,討論的取值范圍,根據(jù)函數(shù)的單調(diào)性,結(jié)合零點(diǎn)存在定理即可篩選出符合題意的的取值范圍.

(1)當(dāng)時(shí),,

列表如下:

1

單調(diào)遞減

極小值

單調(diào)遞增

所以.

(2)設(shè),

設(shè),

得, ,單調(diào)遞增,

單調(diào)遞增,,

①當(dāng),即時(shí),時(shí),,單調(diào)遞增,

,故當(dāng)時(shí),關(guān)于的方程有且只有一個(gè)實(shí)數(shù)解,符合題意.

②當(dāng),即時(shí),由(1)可知

所以,又

,當(dāng)時(shí),,單調(diào)遞減,又

故當(dāng)時(shí),,

內(nèi),關(guān)于的方程有一個(gè)實(shí)數(shù)解1.

時(shí),,單調(diào)遞增,

,令

,,故單調(diào)遞增,又

單調(diào)遞增,故,故

,由零點(diǎn)存在定理可知,,

故在內(nèi),關(guān)于的方程有一個(gè)實(shí)數(shù)解.

又在內(nèi),關(guān)于的方程有一個(gè)實(shí)數(shù)解1,不合題意.

綜上,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解高二年級(jí)學(xué)生某次數(shù)學(xué)考試成績(jī)的分布情況,從該年級(jí)的1120名學(xué)生中隨機(jī)抽取了100名學(xué)生的數(shù)學(xué)成績(jī),發(fā)現(xiàn)都在內(nèi)現(xiàn)將這100名學(xué)生的成績(jī)按照,,,,分組后,得到的頻率分布直方圖如圖所示,則下列說法正確的是  

A. 頻率分布直方圖中a的值為

B. 樣本數(shù)據(jù)低于130分的頻率為

C. 總體的中位數(shù)保留1位小數(shù)估計(jì)為

D. 總體分布在的頻數(shù)一定與總體分布在的頻數(shù)相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距與短軸長(zhǎng)相等,長(zhǎng)軸長(zhǎng)為,設(shè)過右焦點(diǎn)F傾斜角為的直線交橢圓MA、B兩點(diǎn).

(1)求橢圓M的方程;

(2)求證:

(3)設(shè)過右焦點(diǎn)F且與直線AB垂直的直線交橢圓MCD,求四邊形ABCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且曲線在點(diǎn)處的切線與直線垂直.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)求證:時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每個(gè)國(guó)家對(duì)退休年齡都有不一樣的規(guī)定,從2018年開始,我國(guó)關(guān)于延遲退休的話題一直在網(wǎng)上熱議,為了了解市民對(duì)延遲退休的態(tài)度,現(xiàn)從某地市民中隨機(jī)選取100人進(jìn)行調(diào)查,調(diào)查情況如下表:

年齡段(單位:歲)

被調(diào)查的人數(shù)

贊成的人數(shù)

1)從贊成延遲退休的人中任選1人,此人年齡在的概率為,求出表格中的值;

2)若從年齡在的參與調(diào)查的市民中按照是否贊成延遲退休進(jìn)行分層抽樣,從中抽取10人參與某項(xiàng)調(diào)查,然后再?gòu)倪@10人中隨機(jī)抽取4人參加座談會(huì),記這4人中贊成延遲退休的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,求的單調(diào)區(qū)間;

(2)若,,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐中,,.

1)求證:;

2)若二面角的大小為時(shí),求的中線與面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體的棱長(zhǎng)為,,,分別是,,,的中點(diǎn),則過且與平行的平面截正方體所得截面的面積為______,和該截面所成角的正弦值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線與拋物線交于,兩點(diǎn),且.

(1)求的方程;

(2)試問:在軸的正半軸上是否存在一點(diǎn),使得的外心在上?若存在,求的坐標(biāo);若不存在,請(qǐng)說明理由..

查看答案和解析>>

同步練習(xí)冊(cè)答案