【題目】已知橢圓,圓為坐標原點).過點且斜率為的直線與圓交于點,與橢圓的另一個交點的橫坐標為.

1)求橢圓的方程和圓的方程;

2)過圓上的動點作兩條互相垂直的直線,,若直線的斜率為與橢圓相切,試判斷直線與橢圓的位置關系,并說明理由.

【答案】12)直線與橢圓相切,詳見解析

【解析】

1)根據(jù)圓過點可得圓的方程為:根據(jù)過點且斜率為的直線過點,可得,可得直線與橢圓相交的另一個交點坐標為,將其代入橢圓方程可得橢圓的方程為

2)設圓上的動點,所以設直線,將其代入,得,利用判別式為0,可得,設直線,將其代入,利用判別式為0可證直線與橢圓相切.

1)因為圓過點,所以圓的方程為:.

因為過點且斜率為的直線方程為,

又因為過點,所以.

因為直線與橢圓相交的另一個交點坐標為,

所以,解得.

所以橢圓的方程為.

2)直線與橢圓相切.理由如下:

設圓上的動點,所以.

依題意,設直線.

.

因為直線與橢圓相切,

所以.

所以.

所以.

因為,所以.

所以.

設直線,

.

.

所以直線與橢圓相切.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某商場為迎接“618年中慶典,擬推出促銷活動,活動規(guī)則如下:①活動期間凡在商場內(nèi)購物,每滿673元可參與一次現(xiàn)金紅包抽獎,且互不影響,詳細如下表:

獎項

一等獎

二等獎

獎金

200元現(xiàn)金紅包

優(yōu)惠餐券1張(價值50元)

獲獎率

30%

70%

②活動期間凡在商場內(nèi)購物,每滿2019元可參與消費返現(xiàn),返現(xiàn)金額為實際消費金額的15%.規(guī)定每位顧客只可選擇參加其中一種優(yōu)惠活動.

1)現(xiàn)有顧客甲在商場消費2019元,若其選擇參與抽獎,求其可以獲得現(xiàn)金紅包的概率.

2)現(xiàn)有100名消費金額為2019元的顧客正在等待抽獎,假如你是該商場的活動策劃人,你更希望顧客參與哪項優(yōu)惠活動?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】呼和浩特市地鐵一號線于20191229日開始正式運營有關部門通過價格聽證會,擬定地鐵票價后又進行了一次調(diào)查.調(diào)查隨機抽查了50人,他們的月收入情況與對地鐵票價格態(tài)度如下表:

月收入(單位:百元)

認為票價合理的人數(shù)

1

2

3

5

3

4

認為票價偏高的人數(shù)

4

8

12

5

2

1

1)若以區(qū)間的中點值作為月收入在該區(qū)間內(nèi)人的人均月收入求參與調(diào)查的人員中認為票價合理者的月平均收入與認為票價偏高者的月平均收入的差是多少(結(jié)果保留2位小數(shù));

2)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表分析是否有的把握認為月收入以5500元為分界點對地鐵票價的態(tài)度有差異

月收入不低于5500元人數(shù)

月收入低于5500元人數(shù)

合計

認為票價偏高者

認為票價合理者

合計

附:

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前項和為,已知,成等差數(shù)列,且,

1)求數(shù)列的通項公式;

2)記,證明:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,,分別是棱的中點,點在對角線上運動.的面積取得最小值時,點的位置是(

A.線段的三等分點,且靠近點B.線段的中點

C.線段的三等分點,且靠近點D.線段的四等分點,且靠近點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓的長軸長為,點、、為橢圓上的三個點,為橢圓的右端點,過中心,且,

1)求橢圓的標準方程;

2)設是橢圓上位于直線同側(cè)的兩個動點(異于、),且滿足,試討論直線與直線斜率之間的關系,并求證直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的部分圖象如圖所示,則下列敘述正確的是( )

A.函數(shù)的圖象可由的圖象向左平移個單位得到

B.函數(shù)的圖象關于直線對稱

C.函數(shù)在區(qū)間上是單調(diào)遞增的

D.函數(shù)圖象的對稱中心為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點A1,0),動點M滿足以MA為直徑的圓與y軸相切.過A作直線x+m1y+2m50的垂線,垂足為B,則|MA|+|MB|的最小值為(

A.2B.2C.D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1時,討論函數(shù)的單調(diào)性;

2, 時,對任意,有成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案