6.甲乙丙三明同學中有一個人考了滿分,當他們被問到誰考了滿分時,甲說:丙沒有考滿分;乙說:是我考的;丙說:甲說的是真話.事實證明:在這三名同學中,只有一人說的是假話,那么得滿分的同學是( 。
A.B.C.D.不能確定

分析 利用反證法,即可得出結論.

解答 解:假設甲說的是假話,即丙考滿分,則乙也是假話,不成立;
假設乙說的是假話,即乙沒有考滿分,又丙沒有考滿分,故甲考滿分;
故選:A.

點評 本題考查進行簡單的合情推理,考查學生分析解決問題的能力,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=|2x+1|-|x-1|.
(Ⅰ)求不等式f(x)<1的解集;
(Ⅱ)若關于x的不等式f(x)≤a-$\frac{a^2}{2}$+$\frac{5}{2}$有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知數(shù)據(jù)x1,x2,x3,…,x200是上海市普通職工的2016年的年收入,設這200個數(shù)據(jù)的平均數(shù)為x,中位數(shù)為y,方差為z,如果再加上中國首富馬云的年收入x201則這201個數(shù)據(jù)中,下列說法正確的是( 。
A.x大大增大,y一定變大,z可能不變B.x可能不變,y可能不變,z可能不變
C.x大大增大,y可能不變,z也不變D.x大大增大,y可能不變,z變大

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在△ABC中,A=60°,a=4,b=$\frac{4}{3}\sqrt{6}$,則B等于( 。
A.45°或135°B.135°C.45°D.以上答案都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{a}{x}$-xlnx(a∈R),g(x)=2x3-3x2
(1)若m為正實數(shù),求函數(shù)y=g(x),x∈[$\frac{1}{m}$,m]上的最大值和最小值;
(2)若對任意的實數(shù)s,t∈[$\frac{1}{2}$,2],都有f(s)≤g(t),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥1}\\{2x-y+1≤0}\end{array}\right.$,且目標函數(shù)z=mx-ny(m>0,n<0)的最大值為-6,則$\frac{n}{m-1}$的取值范圍是(-∞,0)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知復數(shù)z滿足z(1-i)=3+i,則z=( 。
A.1+2iB.-1+2iC.1-2iD.-1-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某數(shù)學教師對所任教的兩個班級各抽取20名學生進行測試,分數(shù)分布如表,若成績120分以上(含120分)為優(yōu)秀.
分數(shù)區(qū)間甲班頻率乙班頻率
[0,30)0.10.2
[30,60)0.20.2
[60,90)0.30.3
[90,120)0.20.2
[120,150]0.20.1
優(yōu)秀不優(yōu)秀總計
甲班
乙班
總計
k02.0722.7063.8415.0246.6357.87910.828
P(K2≥k00.150.100.050.0250.0100.0050.001
(Ⅰ)求從乙班參加測試的90分以上(含90分)的同學中,隨機任取2名同學,恰有1人為優(yōu)秀的概率;
(Ⅱ)根據(jù)以上數(shù)據(jù)完成上面的2×2列聯(lián)表:在犯錯概率小于0.1的前提下,你是否有足夠的把握認為學生的數(shù)學成績是否優(yōu)秀與班級有關?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)f(x)=-(x-2)2+1,函數(shù)$g(x)=2sin(\frac{π}{6}x)sin(\frac{π}{6}x+\frac{π}{3})+a(a∈R)$,若存在x1,x2∈[1,4],使得f(x1)=g(x2)成立,則實數(shù)a的取值范圍是[-$\frac{9}{2}$,1].

查看答案和解析>>

同步練習冊答案