【題目】已知圓的圓心為,直線.
(1)求圓心的軌跡方程;
(2)若,求直線被圓所截得弦長的最大值;
(3)若直線是圓心下方的切線,當在上變化時,求的取值范圍.
【答案】(1);(2);(3).
【解析】試題分析:(1)由圓的方程,可得圓的圓心坐標為,即可得到圓心的軌跡方程;
(2)將圓的方程轉化為圓的標準方程,得到圓心坐標和半徑,再求得圓心到直線的距離,由圓的弦長公式,得到弦長的函數(shù)關系式,即可求解弦長的最大值;
(3)由直線與圓相切,建立與的關系,,在由點在直線的上方,去掉絕對值,將轉化為二次函數(shù)求解即可.
試題解析:
(1)圓的圓心坐標為.
所以圓心的軌跡方程為.
(2)已知圓的標準方程是.
則圓心的坐標是,半徑為.
直線的方程化為:,則圓心到直線的距離是,
設直線被圓所截得弦長為,由圓弦長、圓心距和圓的半徑之間關系是:
,
∵,∴當時,的最大值為.
(3)因為直線與圓相切,則有.
即.
又點在直線上方,∴,即,
∴,∴.
∵,∴,
∴.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(I)求函數(shù)f(x)的最小正周期和對稱中心的坐標
(II)設,求函數(shù)g(x)在上的最大值,并確定此時x的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=4,2an+1=an+1.
(1)求{an}的通項公式和a5;
(2)若要使a≤ ,求n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在底面是正方形的四棱錐面ABCD,BD交AC于點E,F(xiàn)是PC中點,G為AC上一點.
(1)求證:;
(2)確定點G在線段AC上的位置,使FG//平面PBD,并說明理由;
(3)當二面角的大小為時,求PC與底面ABCD所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=m6x﹣4x , m∈R.
(1)當m= 時,求滿足f(x+1)>f(x)的實數(shù)x的范圍;
(2)若f(x)≤9x對任意的x∈R恒成立,求實數(shù)m的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象過點.
(1)求的值并求函數(shù)的值域;
(2)若關于的方程有實根,求實數(shù)的取值范圍;
(3)若函數(shù),則是否存在實數(shù),使得函數(shù)的最大值為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足:對任意的x1 , x2∈(﹣∞,0),有 ,則( )
A.f(﹣4)<f(3)<f(﹣2)
B.f(﹣2)<f(3)<f(﹣4)
C.f(3)<f(﹣2)<f(﹣4)
D.f(﹣4)<f(﹣2)<f(3)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com