4.已知球面上四點(diǎn)A、B、C、D滿足AB、AC、AD兩兩互相垂直,且AB=1,AC=$\sqrt{2}$,AD=$\sqrt{3}$,則該球的表面積是( 。
A.B.C.D.

分析 由題意,A、B、C、D在球面上,AB、AC、AD兩兩互相垂直,可看成是長(zhǎng)方體的一個(gè)頂角.長(zhǎng),寬,高分別看成是AB=1,AC=$\sqrt{2}$,AD=$\sqrt{3}$即可求該球的半徑,可得該球的表面積.

解答 解:由題意,長(zhǎng)方體的長(zhǎng),寬,高分別是AB=1,AC=$\sqrt{2}$,AD=$\sqrt{3}$.
那么外接球的半徑R=$\frac{1}{2}×$a2+b2+c2=$\frac{\sqrt{6}}{2}$.
∴該球的表面積S=4πR2=6π.
故選:C.

點(diǎn)評(píng) 本題考查球的表面積的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$=(4,-3),|$\overrightarrow$|=3,若向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{2π}{3}$,則|2$\overrightarrow{a}$+3$\overrightarrow$|=$\sqrt{91}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)f(x)=x2,定義數(shù)列{an}如下:an+1=f(an),n∈N*,若給定a1的值,得到無(wú)窮數(shù)列{an}滿足:對(duì)任意正整數(shù)n,均有an+1>an,則a1的取值范圍是( 。
A.(-∞,-1)∪(1,+∞)B.(-∞,0)∪(1,+∞)C.(1,+∞)D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知2(tanA+tanB)=$\frac{sinA+sinB}{cosAcosB}$.
(1)證明:a,c,b成等差數(shù)列;
(2)求cosC的最小值..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)F(x)=ex(e=2.71828…)滿足F(x)=g(x)+h(x),且g(x),h(x)分別是R上的偶函數(shù)和奇函數(shù).
(1)求g(x),h(x)的表達(dá)式;
(2)若任意x∈[1,2]使得不等式aex-2h(x)≥1恒成立,求實(shí)數(shù)a的取值范圍;
(3)探究h(2x)與2h(x)•g(x)的大小關(guān)系,并求$\frac{{2}^{n}g(1)g(2)g({2}^{2})…g({2}^{n-1})}{h({2}^{n})}$(n∈N*)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)$f(x)=a{x^2}-\frac{1}{2}x+c$(a、c∈R),滿足f(1)=0,$f(0)=\frac{1}{4}$成立.
(1)求a、c的值;
(2)若h(x)=$\frac{3}{4}{x}^{2}$$-bx+\frac{2}-\frac{1}{4}$,解不等式f(x)+h(x)<0;
(3)是否存在實(shí)數(shù)m,使函數(shù)g(x)=f(x)-mx在區(qū)間[m,m+2]上有最小值-5?若存在,請(qǐng)求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若冪函數(shù)f(x)=(a2-7a+13)xa+1為奇函數(shù),則實(shí)數(shù)a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$|=1,|$\overrightarrow$|=6,$\overrightarrow{a}$•($\overrightarrow$-$\overrightarrow{a}$)=2.
(1)求向量$\overrightarrow{a}$與$\overrightarrow$的夾角;
(2)求|2$\overrightarrow{a}$-$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.奇函數(shù)f(x)在區(qū)間[1,3]上是單調(diào)遞減函數(shù),則函數(shù)f(x)在區(qū)間[-3,-1]上是( 。
A.單調(diào)遞減函數(shù),且有最小值-f(1)B.單調(diào)遞減函數(shù),且有最大值-f(1)
C.單調(diào)遞增函數(shù),且有最小值f(1)D.單調(diào)遞增函數(shù),且有最大值f(1)

查看答案和解析>>

同步練習(xí)冊(cè)答案