分析 本題考查的是二分法求函數(shù)的近似區(qū)間的問題.在解答時(shí),要充分利用條件所給的計(jì)算結(jié)果,結(jié)合二分法的分析規(guī)律即可獲得問題的解答.
解答 解:由題意可知:對(duì)于函數(shù)y=f(x)在區(qū)間[0,2]上,
有f(0)•f(2)<0,
利用函數(shù)的零點(diǎn)存在性定理,所以函數(shù)在(0,2)上有零點(diǎn).
取區(qū)間的中點(diǎn)中點(diǎn)x1=1,
∵計(jì)算得f(0)•f(x1)<0,
∴利用函數(shù)的零點(diǎn)存在性定理,函數(shù)在(0,1)上有零點(diǎn).
故答案為:(0,1).
點(diǎn)評(píng) 本題考查的是二分法求函數(shù)的近似區(qū)間的問題.在解答的過程當(dāng)中充分體現(xiàn)了二分法解答問題的規(guī)律.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | AC⊥BD | B. | AC∥截面PQMN | ||
C. | AC=BD | D. | 異面直線PM與BD所成的角為45° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直角三角形 | B. | 等腰三角形 | C. | 等腰直角三角形 | D. | 等邊三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | $\sqrt{3}$ | C. | $2\sqrt{3}$ | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a∥b,a∥α,則b∥α | B. | 若a⊥b,a∥α,則b⊥α | C. | 若a∥b,a⊥α,則b⊥α | D. | 若a⊥b,a⊥α,則b∥α |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{{n}_{1}}$=(1,2,1),$\overrightarrow{{n}_{2}}$=(-3,1,1) | B. | $\overrightarrow{{n}_{1}}$=(1,1,2),$\overrightarrow{{n}_{2}}$=(-2,1,1) | ||
C. | $\overrightarrow{{n}_{1}}$=(1,1,1),$\overrightarrow{{n}_{2}}$=(-1,2,1) | D. | $\overrightarrow{{n}_{1}}$=(1,2,1),$\overrightarrow{{n}_{2}}$=(0,-2,-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com