1.用二分法求函數(shù)f(x)在區(qū)間[0,2]上零點(diǎn)的近似解(精確到0.01),若f(0)f(2)<0,取區(qū)間中點(diǎn)x1=1,計(jì)算得f(0)f(x1)<0,則此時(shí)可以判定零點(diǎn)x0∈(0,1)(填區(qū)間)

分析 本題考查的是二分法求函數(shù)的近似區(qū)間的問題.在解答時(shí),要充分利用條件所給的計(jì)算結(jié)果,結(jié)合二分法的分析規(guī)律即可獲得問題的解答.

解答 解:由題意可知:對(duì)于函數(shù)y=f(x)在區(qū)間[0,2]上,
有f(0)•f(2)<0,
利用函數(shù)的零點(diǎn)存在性定理,所以函數(shù)在(0,2)上有零點(diǎn).
取區(qū)間的中點(diǎn)中點(diǎn)x1=1,
∵計(jì)算得f(0)•f(x1)<0,
∴利用函數(shù)的零點(diǎn)存在性定理,函數(shù)在(0,1)上有零點(diǎn).
故答案為:(0,1).

點(diǎn)評(píng) 本題考查的是二分法求函數(shù)的近似區(qū)間的問題.在解答的過程當(dāng)中充分體現(xiàn)了二分法解答問題的規(guī)律.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,在四面體ABCD中,截面PQMN是正方形,且PQ∥AC,則下列命題中,錯(cuò)誤的是( 。
A.AC⊥BDB.AC∥截面PQMN
C.AC=BDD.異面直線PM與BD所成的角為45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,已知cos(A-B)•cosB-sin(A-B)•sinB=0,則△ABC是( 。
A.直角三角形B.等腰三角形C.等腰直角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,a+b+10c=2(sinA+sinB+10sinC),A=60°,則a=( 。
A.4B.$\sqrt{3}$C.$2\sqrt{3}$D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)a、b為兩條不同的直線,α為一個(gè)平面,下列命題中為真命題的是( 。
A.若a∥b,a∥α,則b∥αB.若a⊥b,a∥α,則b⊥αC.若a∥b,a⊥α,則b⊥αD.若a⊥b,a⊥α,則b∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知θ為第三象限的角,且f(θ)=$\frac{{sin(θ-\frac{5π}{2})•cos(\frac{3π}{2}+θ)•tan(3π-θ)}}{sin(-θ-π)•tan(-π-θ)}$,
(1)化簡f(θ);
(2)若$cos(θ-\frac{3π}{2})=\frac{1}{5}$,求tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知tanα=2,求解下列各式
(1)$\frac{4cosα+sinα}{4cosα-sinα}$
(2)sinαcosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若平面α,β垂直,則下面可以作為這兩個(gè)平面的法向量的是( 。
A.$\overrightarrow{{n}_{1}}$=(1,2,1),$\overrightarrow{{n}_{2}}$=(-3,1,1)B.$\overrightarrow{{n}_{1}}$=(1,1,2),$\overrightarrow{{n}_{2}}$=(-2,1,1)
C.$\overrightarrow{{n}_{1}}$=(1,1,1),$\overrightarrow{{n}_{2}}$=(-1,2,1)D.$\overrightarrow{{n}_{1}}$=(1,2,1),$\overrightarrow{{n}_{2}}$=(0,-2,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.語文、數(shù)學(xué)、英語共三本課本放成一摞,語文課本與數(shù)學(xué)課本恰好相鄰放置的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊答案