6.已知θ為第三象限的角,且f(θ)=$\frac{{sin(θ-\frac{5π}{2})•cos(\frac{3π}{2}+θ)•tan(3π-θ)}}{sin(-θ-π)•tan(-π-θ)}$,
(1)化簡f(θ);
(2)若$cos(θ-\frac{3π}{2})=\frac{1}{5}$,求tanθ的值.

分析 (1)利用誘導(dǎo)公式化簡后約分即可得解;
(2)利用誘導(dǎo)公式可求sinθ,利用同角三角函數(shù)基本關(guān)系式即可得解.

解答 解:(1)f(θ)=$\frac{{sin(θ-\frac{5π}{2})•cos(\frac{3π}{2}+θ)•tan(3π-θ)}}{sin(-θ-π)•tan(-π-θ)}$=$\frac{(-cosθ)sinθ(-tanθ)}{sinθ(-tanθ)}$=-cosθ;
(2)∵$cos(θ-\frac{3π}{2})=\frac{1}{5}$,可得:sinθ=-$\frac{1}{5}$,
∵θ為第三象限的角,
∴cos$θ=-\sqrt{1-si{n}^{2}θ}$=-$\frac{2\sqrt{6}}{5}$,$tanθ=\frac{{\sqrt{6}}}{12}$.

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求證:$\sqrt{3}$+$\sqrt{8}$>1+$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知圓的圓心在直線x+y=0上,并且與直線x一y=0和x一y-4=0都相切,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在y=sin|x|,y=|sinx-$\frac{1}{2}$|,$y=sin(πx-\frac{1}{2})$,$y=tan(2x+\frac{π}{3})$四個(gè)函數(shù)中,周期為π的有(  )個(gè).
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.用二分法求函數(shù)f(x)在區(qū)間[0,2]上零點(diǎn)的近似解(精確到0.01),若f(0)f(2)<0,取區(qū)間中點(diǎn)x1=1,計(jì)算得f(0)f(x1)<0,則此時(shí)可以判定零點(diǎn)x0∈(0,1)(填區(qū)間)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={x|y=ln(1-2x)},B={x|x2≤x},全集U=A∪B,則∁U(A∩B)=( 。
A.(-∞,0)B.(-$\frac{1}{2}$,1]C.(-∞,0)∪[$\frac{1}{2}$,1]D.(-$\frac{1}{2}$,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若集合A={x|-2≤x≤3},B={x|x<-1或x>4},則集合A∩B等于( 。
A.{x|-1<x≤3}B.{x|-2≤x<-1}C.{x|3≤x<4}D.{x|x≤3或x>4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖所示,在直三棱拄ABC-A1B1C1中,AA1=AB=AC=1,AB⊥AC,N是BC的中點(diǎn),點(diǎn)P在直線A1B1上,且滿足$\overrightarrow{{A}_{1}P}$=λ$\overrightarrow{{A}_{1}{B}_{1}}$,當(dāng)直線PN與平面ABC所的角最大時(shí),λ的值是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若復(fù)數(shù)z滿足$({1+i})\cdotz=i$,則此復(fù)數(shù)z的虛部為( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}i$D.$-\frac{1}{2}i$

查看答案和解析>>

同步練習(xí)冊(cè)答案