16.已知函數(shù)f(x)=$\frac{x+a}{{x}^{2}+b}$的圖象在點(diǎn)M(-1,f(-1))處的切線方程為x-4y+1=0.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)求函數(shù)y=f(x)的極值.

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)的切線方程得到關(guān)于a,b的方程組,求出a,b的值,從而求出f(x)的解析式即可;
(Ⅱ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可.

解答 解:(Ⅰ)f′(x)=-$\frac{{x}^{2}+2ax-b}{{{(x}^{2}+b)}^{2}}$,
又y=f(x)的圖象在點(diǎn)M(-1,f(-1))處的切線方程為:x-4y+1=0,
∴$\left\{\begin{array}{l}{-1-4f(-1)+1=0}\\{f(-1)=\frac{1}{4}}\end{array}\right.$,即$\left\{\begin{array}{l}{f(-1)=0}\\{f′(-1)=\frac{1}{4}}\end{array}\right.$,
∴$\left\{\begin{array}{l}{\frac{a-1}{1+b}=0}\\{-\frac{1-2a-b}{{(1+b)}^{2}}=\frac{1}{4}}\end{array}\right.$,∴$\left\{\begin{array}{l}{a=1}\\{b≠-1}\\{-4+8a+4b{=(1+b)}^{2}}\end{array}\right.$,
∴a=1,b=3,
∴f(x)=$\frac{x+1}{{x}^{2}+3}$;
(Ⅱ)由(Ⅰ)得f(x)=$\frac{x+1}{{x}^{2}+3}$,
∴f′(x)=-$\frac{(x+3)(x-1)}{{{(x}^{2}+3)}^{2}}$,
令f′(x)>0,解得:-3<x<1,
令f′(x)<0,解得:x>1或x<-3,
∴f(x)在(-∞,-3)遞減,在(-3,1)遞增,在(1,+∞)遞減,
∴f(x)極小值=f(-3)=-$\frac{1}{6}$,f(x)極大值=f(1)=$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用以及切線方程問題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合M={α|α=45°+k•90°,k∈Z},N={α|α=90°+k•45°,k∈z},則集合M與N的關(guān)系是( 。
A.M∩N=∅B.M?NC.N?MD.M=N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E、F,且EF=$\frac{1}{2}$.則下列結(jié)論中正確的個(gè)數(shù)為( 。
①AC⊥BE;
②EF∥平面ABCD;
③三棱錐A-BEF的體積為定值;
④△AEF的面積與△BEF的面積相等.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.函數(shù)f(x)=Asin(ωx-$\frac{π}{3}$)+2(A>0,ω>0)的最大值為4,其圖象相鄰兩條對(duì)稱軸之間的距離為$\frac{π}{2}$.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)α∈(0,π),則f($\frac{α}{2}$)=3,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.?dāng)S三顆骰子(各面上分別標(biāo)有數(shù)字1至6的質(zhì)地均勻的正方體玩具),恰有一顆骰子擲出的點(diǎn)數(shù)可以被3整除的概率為( 。
A.$\frac{4}{9}$B.$\frac{5}{9}$C.$\frac{8}{27}$D.$\frac{19}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.定義在R上的函數(shù)f(x)滿足:f(x)>1-f′(x),f(0)=4,則不等式$\frac{{{e^x}f(x)}}{{{e^x}+3}}$>1(其中e為自然對(duì)數(shù)的底數(shù))的解集為( 。
A.(3,+∞)B.(-∞,0)∪(3,+∞)C.(0,+∞)D.(-∞,0)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在四棱錐P-ABCD中,PA⊥底面ABCD,AB∥CD,AB⊥BC,PA=AB=BC=$\frac{1}{2}$CD.
(Ⅰ)求證:面PAD⊥面PAC;
(Ⅱ)若AB=1,求三棱錐D-PBC的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=sinxcosx-$\frac{\sqrt{3}}{2}$cos2x,則f($\frac{π}{24}$)=(  )
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{6}-\sqrt{2}}{4}$D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知在長方體ABCD-A1B1C1D1中,E、M、N分別是BC、AE、D1C的中點(diǎn),AD=AA1,AB=2AD
(Ⅰ)證明:MN∥平面ADD1A1
(Ⅱ)求直線AD與平面DMN所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案