1.定義在R上的函數(shù)f(x)滿足:f(x)>1-f′(x),f(0)=4,則不等式$\frac{{{e^x}f(x)}}{{{e^x}+3}}$>1(其中e為自然對(duì)數(shù)的底數(shù))的解集為(  )
A.(3,+∞)B.(-∞,0)∪(3,+∞)C.(0,+∞)D.(-∞,0)∪(0,+∞)

分析 構(gòu)造函數(shù)g(x)=exf(x)-ex,(x∈R),研究g(x)的單調(diào)性,不等式$\frac{{{e^x}f(x)}}{{{e^x}+3}}$>1轉(zhuǎn)化為exf(x)>ex+3,結(jié)合原函數(shù)的性質(zhì)和函數(shù)值,即可求解.

解答 解:設(shè)g(x)=exf(x)-ex,(x∈R),
則g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],
∵f(x)+f′(x)>1,
∴f(x)+f′(x)-1>0,
∴g′(x)>0,
∴y=g(x)在定義域上單調(diào)遞增,
不等式$\frac{{{e^x}f(x)}}{{{e^x}+3}}$>1轉(zhuǎn)化為exf(x)>ex+3,
∴g(x)>3,
又∵g(0)═e0f(0)-e0=4-1=3,
∴g(x)>g(0),
∴x>0
故選:C

點(diǎn)評(píng) 本題考查函數(shù)單調(diào)性與奇偶性的結(jié)合,結(jié)合已知條件構(gòu)造函數(shù),然后用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知m、n∈R+,f(x)=|x+m|+|2x-n|.
(1)求f(x)的最小值;
(2)若f(x)的最小值為2,證明:4(m2+$\frac{{n}^{2}}{4}$)的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=lnx-mx2,g(x)=$\frac{1}{2}$mx2+x,m∈R.
(Ⅰ)當(dāng)m=$\frac{1}{2}$時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若關(guān)于x的不等式f(x)+g(x)≤mx-1恒成立,求整數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)g(x)=a-x2($\frac{1}{e}$≤x≤e,e為自然對(duì)數(shù)的底數(shù)),若函數(shù)y=g(x)的圖象與函數(shù)h(x)=2lnx-2的圖象存在關(guān)于x軸對(duì)稱的點(diǎn),則實(shí)數(shù)a的最大值為( 。
A.1B.2C.e2D.2e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{x+a}{{x}^{2}+b}$的圖象在點(diǎn)M(-1,f(-1))處的切線方程為x-4y+1=0.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)求函數(shù)y=f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)滿足f(-x)=f(x),f(x+1)=-$\frac{1}{f(x)}$,且當(dāng)x∈[-1,0]時(shí),f(x)=|x|.若在區(qū)間[-1,3]內(nèi),函數(shù)g(x)=f(x)-kx-k有4個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.$({0,\;\frac{1}{2}}]$B.$({0,\;\frac{1}{3}}]$C.$({0,\;\frac{1}{4}}]$D.$[{\frac{1}{4},\;\;\frac{1}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+tcosa\\ y=2+tsina\end{array}\right.$(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=6sinθ.
(Ⅰ)求a=$\frac{π}{4}$時(shí)的普通方程和圓C普通的方程;
(Ⅱ)設(shè)圓C與直線l交于點(diǎn)A,B.若點(diǎn)P的坐標(biāo)為(1,2),求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知長(zhǎng)方形的對(duì)角線長(zhǎng)為1,求長(zhǎng)方體的最大的表面積,并求出這時(shí)長(zhǎng)方體的各棱長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)f(x)=|x-3|+|x-4|.
(1)求函數(shù)$g(x)=\sqrt{2-f(x)}$的定義域;
(2)若存在實(shí)數(shù)x滿足f(x)≤ax-1,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案