A. | 52 | B. | 34+9$\sqrt{2}$ | C. | 64 | D. | 34+8$\sqrt{10}$ |
分析 由三視圖可知:該幾何體為三棱臺,其中AA1⊥底面ABC,AB⊥AC,AB=AC=4,AA1=4,A1B1=A1C1=2.利用梯形與三角形面積計(jì)算公式即可得出.
解答 解:由三視圖可知:該幾何體為三棱臺,其中AA1⊥底面ABC,AB⊥AC,AB=AC=4,AA1=4,A1B1=A1C1=2.
則該幾何體的表面積=$\frac{1}{2}×{2}^{2}$+$\frac{1}{2}×{4}^{2}$+$\frac{2+4}{2}×4×2$+$\frac{2\sqrt{2}+4\sqrt{2}}{2}$×$\sqrt{{4}^{2}+(2\sqrt{2}-\sqrt{2})^{2}}$
=52.
故選:A.
點(diǎn)評 本題考查了三棱臺的三視圖及其表面積計(jì)算公式、勾股定理、空間線面位置關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12+4$\sqrt{2}$+2$\sqrt{13}$ | B. | 12+8$\sqrt{2}$+2$\sqrt{13}$ | C. | 12+4$\sqrt{2}$+2$\sqrt{26}$ | D. | 12+8$\sqrt{2}$+2$\sqrt{26}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{{2\sqrt{e}}}$ | B. | $\frac{1}{{\sqrt{e}}}$ | C. | $\frac{1}{e}$ | D. | $\frac{1}{e^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$) | B. | ($\frac{1}{2}$,-$\frac{{\sqrt{3}}}{2}$) | C. | (-$\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$) | D. | ($\frac{{\sqrt{3}}}{2}$,-$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | -2 | -1 | 0 | 1 | 2 |
y | 5 | 4 | 2 | 2 | 1 |
A. | $\stackrel{∧}{y}$=-x+2.8 | B. | $\stackrel{∧}{y}$=-x+3 | C. | $\stackrel{∧}{y}$=-1.2x+2.6 | D. | $\stackrel{∧}{y}$=2x+2.7 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com