12.已知圓O:x2+y2=4上到直線l:x+y=a的距離等于1的點(diǎn)有3個(gè),則a=$±\sqrt{2}$.

分析 若圓C上恰有3個(gè)點(diǎn)到直線l的距離等于1,則O到直線l:x+y=a的距離d等于1,代入點(diǎn)到直線的距離公式,可得答案.

解答 解:由圓C的方程:x2+y2=4,可得圓C的圓心為原點(diǎn)O(0,0),半徑為2
若圓C上恰有3個(gè)點(diǎn)到直線l的距離等于1,則O到直線l:x+y=a的距離d等于1
直線l的一般方程為:x+y-a=0,∴d=$\frac{|a|}{\sqrt{2}}$=1
解得a=$±\sqrt{2}$.
故答案為:$±\sqrt{2}$.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,考查點(diǎn)到直線的距離公式,其中分析出圓心O到直線l:x+y=a的距離d等于1是解解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.定義兩個(gè)實(shí)數(shù)間的一種新運(yùn)算“*”:x*y=lg(10x+10y)(x,y∈R).對(duì)于任意實(shí)數(shù)a,b,c,給出如下結(jié)論:
①a*b=b*a;②(a*b)*c=a*(b*c)③(a*b)+c=(a+c)*(b+c);④(a*b)×c=(a×c)*(b×c).其中正確的結(jié)論是1,2,3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=x2+x+2,x∈(-5,5)的單調(diào)減區(qū)間為(  )
A.$(-∞,-\frac{1}{2})$B.$(-5,-\frac{1}{2})$C.$(-\frac{1}{2},5)$D.$(-\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知3sin2α=sinα,則cos(α-π)等于(  )
A.-$\frac{1}{6}$B.$-\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知{an}是等差數(shù)列,a1+a2+a3=3,a5+a6+a7=9,則a3=(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知冪函數(shù)f(x)=x2,若x1≥x2≥x3,x1+x2+x3=1,f(x1)+f(x2)+f(x3)=1,則x1+x2的取值范圍是[$\frac{2}{3}$,$\frac{4}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.不等式$\frac{1-x}{{{x^2}-4}}<0$的解集是( 。
A.(-2,1)B.(2,+∞)C.(-2,1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知($\root{3}{{x}^{2}}$+3x)n展開式各項(xiàng)系數(shù)和比它的二項(xiàng)式系數(shù)和大992.
(1)求展開式中含有x4的項(xiàng);
(2)求展開式中二項(xiàng)式系數(shù)最大的項(xiàng);
(3)求展開式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,在離地面高400m的熱氣球上,觀測(cè)到山頂C處的仰角為15°,山腳A處的俯角為45°,已知∠BAC=60°,則山的高度BC為( 。
A.700 mB.640 mC.600 mD.560 m

查看答案和解析>>

同步練習(xí)冊(cè)答案