分析 由已知條件可得b=$\frac{1-a}{a+1}$且-1<a<1,代入消元并變形可得$\frac{ab+b}{b+2}$=-[(a+3)+$\frac{8}{a+3}$]+6,由基本不等式求最值的方法可得.
解答 解:∵a>-1,b>0,且滿足ab+a+b=1,
∴(a+1)b=1-a,∴b=$\frac{1-a}{a+1}$,
由b=$\frac{1-a}{a+1}$>0可得-1<a<1,
∴$\frac{ab+b}{b+2}$=$\frac{(a+1)•\frac{1-a}{a+1}}{\frac{1-a}{a+1}+2}$=$\frac{-{a}^{2}+1}{a+3}$
=$\frac{-(a+3)^{2}+6(a+3)-8}{a+3}$
=-(a+3)-$\frac{8}{a+3}$+6
=-[(a+3)+$\frac{8}{a+3}$]+6
≤-2$\sqrt{(a+3)•\frac{8}{a+3}}$+6=6-4$\sqrt{2}$
當(dāng)且僅當(dāng)(a+3)=$\frac{8}{a+3}$即a=3-2$\sqrt{2}$時取等號,
∵a=3-2$\sqrt{2}$滿足-1<a<1,
∴$\frac{ab+b}{b+2}$的最大值為:6-4$\sqrt{2}$
故答案為:6-4$\sqrt{2}$.
點(diǎn)評 本題考查基本不等式求最值,消元并變形為可用基本不等式的形式是解決問題的關(guān)鍵和難點(diǎn),屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x<-1或x>2} | B. | {x|-1<x<2} | C. | {x|1<x<2} | D. | {x|x<1或x>2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4條 | B. | 3條 | C. | 2條 | D. | 無數(shù)條 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com