【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(其中為參數(shù)),現(xiàn)以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)寫出直線和曲線的普通方程;
(2)已知點為曲線上的動點,求到直線的距離的最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時, .
(1)求函數(shù)的解析式;
(2)現(xiàn)已畫出函數(shù)在軸左側(cè)的圖象,如圖所示,請補全完整函數(shù)的圖象;
(3)根據(jù)(2)中畫出的函數(shù)圖像,直接寫出函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某小區(qū)準(zhǔn)備將閑置的一直角三角形(其中∠B=,AB=a,BC=a)地塊開發(fā)成公共綠地,設(shè)計時,要求綠地部分有公共綠地走道MN,且兩邊是兩個關(guān)于走道MN對稱的三角形(△AMN和△A′MN),現(xiàn)考慮方便和綠地最大化原則,要求M點與B點不重合,A′落在邊BC上,設(shè)∠AMN=θ.
(1)若θ=時,綠地“最美”,求最美綠地的面積;
(2)為方便小區(qū)居民的行走,設(shè)計時要求將AN,A′N的值設(shè)計最短,求此時綠地公共走道的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,已知,點、分別在、上,且,將四邊形沿折起,使點在平面上的射影在直線上.
(I)求證: ;
(II)求點到平面的距離;
(III)求直線與平面所成的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
(1)求函數(shù)在區(qū)間上的最小值;
(2)對一切實數(shù)恒成立,求實數(shù)的取值范圍;
(3)證明:對一切, 恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}滿足:|a2-a3|=10,a1a2a3=125.
(1) 求{an}的通項公式;
(2) 求證:++…+<1對任意正整數(shù)m都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.直線過點.
(1)若直線與曲線交于兩點,求的值;
(2)求曲線的內(nèi)接矩形的周長的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com