12.若平面向量$\overrightarrow a$=(1,x)和$\overrightarrow b$=(-2,1)互相平行,其中x∈R,則x=$-\frac{1}{2}$.

分析 利用向量平行的充要條件列出方程求解即可.

解答 解:平面向量$\overrightarrow a$=(1,x)和$\overrightarrow b$=(-2,1)互相平行,
可得-2x=1,解得x=-$\frac{1}{2}$.
故答案為:$-\frac{1}{2}$.

點評 本題考查向量共線的充要條件的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(x)是定義在(0,+∞)上的增函數(shù),且f(x+y)=f(x)f(y),f(1)=3,求不等式f(x)f(x2-3)≤27的解集($\sqrt{3}$,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知集合M={x|-1<x<1},N={x|$\frac{x}{x-1}$≤0},則M∩N={x|0≤x<1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖在角的兩邊上分別有A,B,C,D,E,F(xiàn),G,H,I,共九個點,若兩兩連線相交,且交點在角的內(nèi)部,這樣的交點個數(shù)最多為60個.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)已知角α的終邊經(jīng)過點P(4,-3),求2sinα+cosα的值.
(2)已知角α的終邊上一點$P(-\sqrt{3},m)(m≠0)$,且$sinα=\frac{{\sqrt{2}m}}{4}$,求cosα及tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.從5名男生和3名女生中任選4人參加朗誦比賽,設(shè)隨機(jī)變量X表示所選4人中女生的人數(shù),則E(X)等于(  )
A.$\frac{3}{2}$B.$\frac{2}{3}$C.$\frac{5}{4}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知α,β都是銳角,$cosα=\frac{1}{7},cos(α+β)=-\frac{11}{14}$,則β為( 。
A.60°B.45°C.30°D.15°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的兩個焦點坐標(biāo)分別是(-1,0),(1,0),并且經(jīng)過點($\frac{1}{2}$,$\frac{3\sqrt{5}}{4}$).
(I)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l:y=kx+m(m≠0)與橢圓C交于不同的兩點A,B,且以AB為直徑的圓通過橢圓C的右頂點P,求證:直線l過定點(P點除外),并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知|${\overrightarrow a}$|=5,|${\overrightarrow b}$|=3,且兩向量的夾角為60°,則向量$\overrightarrow a$在向量$\overrightarrow b$上的投影等于( 。
A.$\frac{3}{2}$B.$\frac{5}{2}$C.$\frac{{3\sqrt{3}}}{2}$D.$\frac{{5\sqrt{3}}}{2}$

查看答案和解析>>

同步練習(xí)冊答案