分析 令f(x)=x3+ax+b=x3-3x-3,求導(dǎo)f′(x)=3x2-3=3(x+1)(x-1),從而判斷函數(shù)的單調(diào)性及極值,從而可得①正確;同理求得.
解答 解:令f(x)=x3+ax+b,
當(dāng)a=b=-3時,f(x)=x3-3x-3,
f′(x)=3x2-3=3(x+1)(x-1),
故f(x)在(-∞,-1)上是增函數(shù),在(-1,1)上是減函數(shù),在(1,+∞)上是增函數(shù);
f(-1)=-1,f(1)=1-3-3=-5,
故f(x)的圖象與x軸有且只有一個交點,
故方程有且只有一個根;
同理可得,
②a=-3,b=2不正確;
③a=-3,b>2;④a=0,b=2也正確;
故答案為:①③④.
點評 本題考查了函數(shù)的零點與函數(shù)的關(guān)系應(yīng)用及導(dǎo)數(shù)的綜合應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | -$\sqrt{3}$ | D. | -$\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com