16.已知橢圓$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{9}$=1(m為實(shí)數(shù))的左焦點(diǎn)為(-4,0),則該橢圓的離心率為( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{5}{3}$D.$\frac{5}{4}$

分析 由題意可得橢圓的焦點(diǎn)在x軸上,可得b=3,c=4,由a,b,c的關(guān)系,解得a=5,再由離心率e=$\frac{c}{a}$,計(jì)算即可得到所求值.

解答 解:橢圓$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{9}$=1(m為實(shí)數(shù))的左焦點(diǎn)為(-4,0),
即有a=|m|,b=3,c=4,
由c2=a2-b2,即16=m2-9,
可得a=|m|=5,
可得離心率e=$\frac{c}{a}$=$\frac{4}{5}$.
故選:B.

點(diǎn)評 本題考查橢圓的方程和性質(zhì),主要是離心率的求法,求出橢圓的a,b,c是解題的關(guān)鍵,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.給出最小二乘法下的回歸直線方程$\widehat{y}$=$\widehat$x+$\widehat{a}$系數(shù)公式:
$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$
假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬元),有如表的統(tǒng)計(jì)資料:
使用年限x (年)23456
維修費(fèi)用y(萬元)2.23.85.56.57.0
若由資料可知y對x呈線性相關(guān)關(guān)系,試求:
(1)線性回歸直線方程;
(2)根據(jù)回歸直線方程,估計(jì)使用年限為12年時(shí),維修費(fèi)用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知以點(diǎn)C(t,$\frac{3}{t}}$)(t∈R,t≠0)為圓心的圓過原點(diǎn)O.
(Ⅰ) 設(shè)直線3x+y-4=0與圓C交于點(diǎn)M、N,若|OM|=|ON|,求圓C的方程;
(Ⅱ) 在(Ⅰ)的條件下,設(shè)B(0,2),且P、Q分別是直線l:x+y+2=0和圓C上的動點(diǎn),求|PQ|-|PB|的最大值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知a,b,c滿足a<b<c,且ac<0,則下列不等關(guān)系中不滿足恒成立條件的是( 。
A.$\frac{b-c}{a}$>0B.$\frac{a}{c}$<$\frac{c}$C.$\frac{c-a}{ac}$<0D.$\frac{{c}^{2}}{a}$<$\frac{^{2}}{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在銳角△ABC中,內(nèi)角A、B、C的所對的邊分別為a、b、c,若2acosC+c=2b,則$\sqrt{3}$sin$\frac{B}{2}$cos$\frac{B}{2}$+cos2$\frac{B}{2}$的取值范圍是($\frac{\sqrt{3}+1}{2}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2$\sqrt{3}$,長軸長為4.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)如圖,過坐標(biāo)原點(diǎn)O作兩條互相垂直的射線,與橢圓C交于A,B兩點(diǎn).設(shè)A(x1,y1),B(x2,y2),直線AB的方程為y=-2x+m(m>0),試求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=e|x|cosx的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,已知函數(shù)f(x)=msin($\frac{π}{2}$x+$\frac{π}{4}$)(m>0)的圖象在y軸右側(cè)的最高點(diǎn)從左到右依次為B1、B2、B3、…,與x軸正半軸的交點(diǎn)從左到右依次為C1、C2、C3、….
(1)若m=1,求$\overrightarrow{O{B}_{1}}$•$\overrightarrow{{B}_{1}{C}_{1}}$;
(2)在△OB1C1,△OB2C3,△OB3C5,…,△OBiC2i-1,(i=1,2,3,…)中,有且只有三個(gè)銳角三角形,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的一系列對應(yīng)值如表:
 x-$\frac{π}{6}$ $\frac{π}{3}$ $\frac{5π}{6}$ $\frac{4π}{3}$ $\frac{11π}{6}$ $\frac{7π}{3}$ $\frac{17π}{6}$
 y-1 1 3 1-1 1 3
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)f(x)的一個(gè)解析式;
(2)對于區(qū)間[a,b],規(guī)定|b-a|為區(qū)間長度,根據(jù)(1)的結(jié)果,若函數(shù)y=f(kx)-f(kx+$\frac{π}{2}$)(k>0)在任意區(qū)間長度為$\frac{1}{10}$的區(qū)間上都能同時(shí)取到最大值和最小值,求正整數(shù)k的最小值.

查看答案和解析>>

同步練習(xí)冊答案