【題目】某機(jī)構(gòu)通過對(duì)某企業(yè)今年的生產(chǎn)經(jīng)營情況的調(diào)查,得到每月利潤(單位:萬元)與相應(yīng)月份數(shù)的部分?jǐn)?shù)據(jù)如表:

1

4

7

12

229

244

241

196

(1)根據(jù)如表數(shù)據(jù),請(qǐng)從下列三個(gè)函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述的變化關(guān)系,并說明理由,,,;

(2)利用(1)中選擇的函數(shù),估計(jì)月利潤最大的是第幾個(gè)月,并求出該月的利潤.

【答案】(1),理由見解析;(2)第5個(gè)月,利潤最大為245.

【解析】

1)根據(jù)題中數(shù)據(jù),即可直接判斷出結(jié)果;

2)將題中代入,求出參數(shù),根據(jù)二次函數(shù)的性質(zhì),以及自變量的范圍,即可得出結(jié)果.

(1)由題目中的數(shù)據(jù)知,描述每月利潤(單位:萬元)與相應(yīng)月份數(shù)的變化關(guān)系函數(shù)不可能是常數(shù)函數(shù),也不是單調(diào)函數(shù);所以,應(yīng)選取二次函數(shù)進(jìn)行描述;

(2)將,代入,解得,

,,

,∴,萬元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線截圓所得的弦長為.直線的方程為

(1)求圓的方程;

(2)若直線過定點(diǎn),點(diǎn)在圓上,且,為線段的中點(diǎn),求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 =1(a>0,b>0),過其左焦點(diǎn)F作x軸的垂線,交雙曲線于A,B兩點(diǎn),若雙曲線的右頂點(diǎn)在以AB為直徑的圓外,則雙曲線離心率的取值范圍是(
A.(1,
B.(1,2)
C.( ,+∞)
D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】紅鈴蟲是棉花的主要害蟲之一,也侵害木棉、錦葵等植物.為了防治蟲害,從根源上抑制害蟲數(shù)量.現(xiàn)研究紅鈴蟲的產(chǎn)卵數(shù)和溫度的關(guān)系,收集到7組溫度和產(chǎn)卵數(shù)的觀測(cè)數(shù)據(jù)于表I中.根據(jù)繪制的散點(diǎn)圖決定從回歸模型①與回歸模型②中選擇一個(gè)來進(jìn)行擬合.

表I

溫度

20

22

25

27

29

31

35

產(chǎn)卵數(shù)個(gè)

7

11

21

24

65

114

325

(1)請(qǐng)借助表II中的數(shù)據(jù),求出回歸模型①的方程:

表II(注:表中

189

567

25.27

162

78106

11.06

3040

41.86

825.09

(2)類似的,可以得到回歸模型②的方程為.試求兩種模型下溫度為時(shí)的殘差;

(3)若求得回歸模型①的相關(guān)指數(shù),回歸模型②的相關(guān)指數(shù),請(qǐng)結(jié)合②說明哪個(gè)模型的擬合效果更好.

參考數(shù)據(jù):

附:回歸方程相關(guān)指數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知b(1+cosC)=c(2﹣cosB).
(Ⅰ)求證:a,c,b成等差數(shù)列;
(Ⅱ)若C= ,△ABC的面積為4 ,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,且.

(1)證明:平面平面;

(2)若,,二面角的大小為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某班學(xué)生喜好體育運(yùn)動(dòng)是否與性別有關(guān),對(duì)本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

喜好體育運(yùn)動(dòng)

不喜好體育運(yùn)動(dòng)

合計(jì)

男生

5

女生

10

合計(jì)

50

已知按喜好體育運(yùn)動(dòng)與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運(yùn)動(dòng)的人數(shù)為6.

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

(2)能否在犯錯(cuò)概率不超過的前提下認(rèn)為喜好體育運(yùn)動(dòng)與性別有關(guān)?說明你的理由.

(參考公式: )

臨界值表

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓 的離心率與雙曲線的離心率互為倒數(shù),且橢圓的長軸長為4.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線交橢圓, 兩點(diǎn), )為橢圓上一點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù))若以O(shè)點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為ρ=4cos θ.
(1)求曲線C的直角坐標(biāo)方程及直線l的普通方程;
(2)將曲線C上各點(diǎn)的橫坐標(biāo)縮短為原來的 ,再將所得曲線向左平移1個(gè)單位,得到曲線C1 , 求曲線C1上的點(diǎn)到直線l的距離的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案