8.已知α、β都是銳角,tanα=2,tanβ=3,那么α+β等于( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{3π}{4}$

分析 由條件求得 α+β∈($\frac{π}{2}$,π ),再根據(jù)tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=-1,可得α+β的值.

解答 解:∵α、β都是銳角,tanα=2>1,tanβ=3>1,
∴α∈($\frac{π}{4}$,$\frac{π}{2}$),β∈($\frac{π}{4}$,$\frac{π}{2}$),
∴α+β∈($\frac{π}{2}$,π ).
再根據(jù)tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=-1,可得α+β=$\frac{3π}{4}$,
故選:D.

點(diǎn)評(píng) 本題主要考查兩角和的正切公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.類比a(b+c)=ab+ac得到下列結(jié)論:
①lg(a+b)=lga+lgb;
②sin(α+β)=sinα+sinβ;
③$\overrightarrow{a}$•($\overrightarrow$+$\overrightarrow{c}$)=$\overrightarrow{a}$•$\overrightarrow$+$\overrightarrow{a}$•$\overrightarrow{c}$;
④A∩(B∪C)=(A∩B)∪(A∩C)
以上結(jié)論全部正確的選項(xiàng)是( 。
A.①②③④B.③④C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)的圖象是連續(xù)不斷的,有如下的x,f(x)的對(duì)應(yīng)表:
x123456
f(x)136.1315.552-3.9210.88-52.488-232.064
則函數(shù)f(x)存在零點(diǎn)的區(qū)間有(  )
A.區(qū)間[1,2]和[2,3]B.區(qū)間[2,3]和[3,4]
C.區(qū)間[3,4]、[4,5]和[5,6]D.區(qū)間[2,3]、[3,4]和[4,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)p:1<x<2,q:log2x>0,則p是q成立的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若復(fù)數(shù)z=$\frac{1-i}{(1+i)^{2}}$+i(i為虛數(shù)單位),則|z|=( 。
A.$\frac{3}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)p:(3x2+ln3)′=6x+3;q:(3-x2)ex的單調(diào)增區(qū)間是(-3,1),則下列復(fù)合命題的真假是( 。
A.“p∨q”假B.“p∧q”真C.“¬q”真D.p∨q真

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.($\sqrt{x}$+$\frac{2}{\root{3}{x}}$)4展開(kāi)式中所有項(xiàng)的系數(shù)和為(  )
A.16B.32C.64D.81

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知復(fù)數(shù)z1=1+2i,z2=2+i,則|z2-z1|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=|ax2-1|+x,a∈R.
(Ⅰ)若a=2,且關(guān)于x的不等式f(x)-m≤0在R上有解,求m的最小值;
(Ⅱ)若函數(shù)f(x)在區(qū)間[-3,2]上不單調(diào),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案