3.若復數(shù)z=$\frac{1-i}{(1+i)^{2}}$+i(i為虛數(shù)單位),則|z|=( 。
A.$\frac{3}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

分析 根據(jù)復數(shù)的四則運算進行化簡,結(jié)合復數(shù)的模長公式進行計算即可.

解答 解:z=$\frac{1-i}{(1+i)^{2}}$+i=$\frac{1-i}{2i}$+i=$\frac{-i(1-i)}{-2{i}^{2}}$+i=$\frac{-1-i}{2}+i$=$-\frac{1}{2}$+$\frac{1}{2}$i,
則|z|=$\sqrt{(-\frac{1}{2})^{2}+(\frac{1}{2})^{2}}$=$\frac{\sqrt{2}}{2}$,
故選:B

點評 本題主要考查復數(shù)的模長的計算,根據(jù)復數(shù)的四種運算進行化簡是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.在△ABC中,角A、B、C所對的邊分別是a、b、c,且滿足csinA-$\sqrt{3}$acosC=0.
(1)求角C的大。
(2)若c=2,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.對于定義域為D的函數(shù)y=f(x),若同時滿足下列條件:
①f(x)在D內(nèi)單調(diào)遞增或單調(diào)遞減;
②存在區(qū)間[a,b]⊆D,使f(x)在[a,b]上的值域為[a,b],則把y=f(x),x∈D叫閉函數(shù).
(1)求閉函數(shù)y=x3符合條件②的區(qū)間[a,b];
(2)判斷函數(shù)f(x)=$\frac{3}{4}$x+$\frac{1}{x}$,(x>0)是否為閉函數(shù)?并說明理由;
(3)已知[a,b]是正整數(shù),且定義在(1,m)的函數(shù)y=k-$\frac{9}{x+1}$是閉函數(shù),求正整數(shù)m的最小值,及此時實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在半徑為$\sqrt{3}$,圓心角為60°的扇形的弧上任取一點P,作扇形的內(nèi)接矩形PNMQ,使點Q在OA上,點N,M在OB上,設(shè)矩形PNMQ的面積為y,∠POB=θ.
(Ⅰ)將y表示成θ的函數(shù)關(guān)系式,并寫出定義域;
(Ⅱ)求矩形PNMQ的面積取得最大值時$\overrightarrow{OP}$•$\overrightarrow{ON}$的值;
(Ⅲ)求矩形PNMQ的面積y≥$\frac{\sqrt{6}-\sqrt{3}}{2}$的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤2}\\{y≥0}\end{array}\right.$,若z=ax-3y的最大值為2,則a=( 。
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知α、β都是銳角,tanα=2,tanβ=3,那么α+β等于( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知a,b,c分別是△ABC的內(nèi)角A,B,C的對邊,sin2B=2sinAsinC.
(1)若a=b,求cosB的值;
(2)若B=60°,△ABC的面積為4$\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.用a代表紅球,b代表藍球,c代表黑球,由加法原理及乘法原理,從1個紅球和1個藍球中取出若干個球的所有取法可由(1+a)•(1+b)的展開式1+a+b+ab表示出來,如:“1”表示一個球都不取、“a”表示取出一個紅球,而“ab”表示把紅球和藍球都取出來,以此類推,下列各式中,其展開式可用來表示從3個無區(qū)別的紅球、3個無區(qū)別的藍球、2個有區(qū)別的黑球中取出若干個球,且所有藍球都取出或都不取出的所有取法的是①
①(1+a+a2+a3)(1+b3)(1+c)2
②(1+a3)(1+b+b2+b3)(1+c)2
③(1+a)3(1+b+b2+b3)(1+c2
④(1+a3)(1+b)3(1+c+c2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.矩形ABCD中,AB=1,BC=$\sqrt{3}$,將矩形沿對角線AC折起,使B點與P點重合,點P在平面ACD內(nèi)的射影M正好在AD上.
(Ⅰ)求證CD⊥PA;
(Ⅱ)求二面角P-AC-D的余弦值.

查看答案和解析>>

同步練習冊答案