17.已知復數(shù)z1=1+2i,z2=2+i,則|z2-z1|=$\sqrt{2}$.

分析 根據(jù)復數(shù)的減法法則進行運算,結(jié)合復數(shù)的模長公式進行求解即可.

解答 解:∵z1=1+2i,z2=2+i,
∴z2-z1=2+i-(1+2i)=1-i,
則$|{z_2}-{z_1}|=\sqrt{2}$.
故答案為:$\sqrt{2}$

點評 本題主要考查復數(shù)的模長計算,根據(jù)復數(shù)的四則運算進行化簡是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.下列敘述錯誤的是( 。
A.頻率是隨機的,在試驗前不能確定,隨著試驗次數(shù)的增加,頻率一定會越來越接近概率
B.有甲乙兩種報紙可供某人訂閱,事件B:”至少訂一種報”與事件C:“至多訂一種報”是對立事件
C.互斥事件不一定是對立事件,但是對立事件一定是互斥事件
D.從區(qū)間(-10,10)內(nèi)任取一個整數(shù),求取到大于1且小于5的概率模型是幾何概型

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知α、β都是銳角,tanα=2,tanβ=3,那么α+β等于( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.4張卡片上分別寫有數(shù)字1,1,2,2,從這4張卡片中隨機抽取2張,則取出的2張卡片上的數(shù)字不相等的概率為(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.用a代表紅球,b代表藍球,c代表黑球,由加法原理及乘法原理,從1個紅球和1個藍球中取出若干個球的所有取法可由(1+a)•(1+b)的展開式1+a+b+ab表示出來,如:“1”表示一個球都不取、“a”表示取出一個紅球,而“ab”表示把紅球和藍球都取出來,以此類推,下列各式中,其展開式可用來表示從3個無區(qū)別的紅球、3個無區(qū)別的藍球、2個有區(qū)別的黑球中取出若干個球,且所有藍球都取出或都不取出的所有取法的是①
①(1+a+a2+a3)(1+b3)(1+c)2
②(1+a3)(1+b+b2+b3)(1+c)2
③(1+a)3(1+b+b2+b3)(1+c2
④(1+a3)(1+b)3(1+c+c2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.某同學投籃第一次命中的概率是0.75,連續(xù)兩次投籃命中的概率是0.6,已知該同學第一次投籃命中,則其隨后第二次投籃命中的概率是(  )
A.0.45B.0.6C.0.75D.0.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知數(shù)列{an}中,a1=1,an+1=$\frac{a_n}{{1+{a_n}}}$(n=1,2,3,…)計算該數(shù)列的前幾項,猜想它的通項公式是(  )
A.${a_n}=\frac{1}{n}$B.an=nC.${a_n}={n^2}$D.${a_n}=\frac{1}{2n-1}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.求分別滿足下列條件的直線方程:
(1)直線l1過點A(-1,2)且與直線2x-3y+4=0垂直;
(2)直線l2過點A(1,3),且斜率是直線y=-4x的斜率的$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知集合A={x|-2<x<a,x∈z},若集合A中恰有3個元素,則a的取值范圍是(1,2].

查看答案和解析>>

同步練習冊答案