17.已知△ABC中,a,b,c分別為角A,B,C的對(duì)邊,若△ABC的面積S=$\frac{{a}^{2}+^{2}-{c}^{2}}{4\sqrt{3}}$,則角C=$\frac{π}{6}$.

分析 利用余弦定理及三角形的面積公式對(duì)已知條件進(jìn)行化簡(jiǎn)可得,sinC=cosC,結(jié)合三角形的內(nèi)角范圍可求角C

解答 解:∵4s=a2+b2-c2,
∴S=$\frac{{a}^{2}+^{2}-{c}^{2}}{4\sqrt{3}}$,
∴4×$\sqrt{3}$×$\frac{1}{2}$absinC=2abcosC,
化簡(jiǎn)可得,$\sqrt{3}$sinC=cosC,tanC=$\frac{\sqrt{3}}{3}$,
∵0<C<π
∴C=$\frac{π}{6}$
故答案為:$\frac{π}{6}$.

點(diǎn)評(píng) 本題主要考查了三角形的面積公式及余弦定理的應(yīng)用,屬于基礎(chǔ)試題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知向量$\overrightarrow{m}$=(cos$\frac{x}{2}$,-1),$\overrightarrow{n}$=($\sqrt{3}$sin$\frac{x}{2}$,cos2$\frac{x}{2}$),設(shè)函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(Ⅰ)求f(x)在區(qū)間[0,π]上的零點(diǎn);
(Ⅱ)△ABC中,若A=$\frac{π}{3}$,B是△ABC中的最大內(nèi)角,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若10件產(chǎn)品中包含3件廢品,今在其中任取兩件,則在取出的兩件中有一件是廢品的條件下,另一件也是廢品的概率是$\frac{2}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.有5名同學(xué)被安排在周一至周五值日.已知同學(xué)甲只能在周一值日;那么5名同學(xué)值日順序的編排方案共有( 。
A.12種B.24種C.48種D.120種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.90°=$\frac{π}{2}$弧度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)y=$\frac{1}{2}$arccos($\frac{1}{4}$+x-x2)的值域?yàn)椋ā 。?table class="qanwser">A.[0,π]B.[$\frac{π}{6}$,$\frac{π}{2}$]C.[$\frac{π}{3}$,π]D.[$\frac{π}{3}$,$\frac{2π}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知命題p:2-c<x<2+c(c>0),命題q:x2-9x+18>0,如果命題p是q的充分不必要條件,則c的取值范圍是( 。
A.(0,1)B.(0,1]C.[1,4]D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)偶函數(shù)f(x)(x∈R)的導(dǎo)函數(shù)是函數(shù)f′(x),f(2)=0,當(dāng)x<0時(shí),xf′(x)-f(x)>0,則使得f(x)>0成立的x的取值范圍是(  )
A.(-∞,-2)∪(0,2)B.(-∞,-2)∪(2,+∞)C.(-2,0)∪(2,+∞)D.(0,2)∪(-2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=x-1-a(x-1)2-lnx(a∈R).
(1)當(dāng)a=0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=f(x)-x+1有一個(gè)極小值點(diǎn)和一個(gè)極大值點(diǎn),求a的取值范圍;
(3)若存在k∈(1,2),使得當(dāng)x∈(0,k]時(shí),f(x)的值域是[f(k),+∞),求a的取值范圍.注:自然對(duì)數(shù)的底數(shù)e=2.71828…

查看答案和解析>>

同步練習(xí)冊(cè)答案