某個服裝店經(jīng)營某種服裝,在某周內(nèi)獲純利y(元),與該周每天銷售這種服裝件數(shù)x之間的一組數(shù)據(jù)關(guān)系見表:
x3456789
y66697381899091
已知
7
i-1
xi2
=280,
7
i-1
yi2
=45309,
7
i-1
xiyi
=3487.
(1)求
.
x
.
y
;參考公式:
b
=
n
i-1
(xi-
.
x
)(yi-
.
y
)
n
i-1
(xi-
.
x
)
2
=
n
i-1
xiyi-n
.
x
.
y
n
i-1
xi2-nx-2
a
=
.
y
-
b
.
x

(2)畫出散點圖;
(3)判斷純利y與每天銷售件數(shù)x之間是否線性相關(guān),如果線性相關(guān),求出回歸方程.
考點:回歸分析
專題:應(yīng)用題,概率與統(tǒng)計
分析:(1)利用平均數(shù)公式計算即得.
(2)把所給的7對數(shù)據(jù)寫成對應(yīng)的點的坐標(biāo),在坐標(biāo)系中描出來,得到散點圖.
(3)作出利用最小二乘法來求線性回歸方程的系數(shù)的量,求出橫標(biāo)和縱標(biāo)的平均數(shù),求出系數(shù),再求出a的值,即可求出回歸方程.
解答: 解:(1)
.
x
=
1
7
(3+4+5+6+7+8+9)=6,
.
y
=
1
7
(66+69+73+81+89+90+91)=
559
7
≈79.86;
(2)把所給的7對數(shù)據(jù)寫成對應(yīng)的點的坐標(biāo),在坐標(biāo)系中描出來,得到散點圖.
(3)∵3×66+4×69+5×73+6×81+7×89+8×90+9×91=3487,32+42+52+62+72+82+92=280,
∴b=
3487-7×6×
559
7
280-7×36
=4.75
,a=
559
7
-6×4.75≈51.36,
故線性回歸方程為y=4.75x+51.36.
點評:本題考查線性回歸方程的求法和應(yīng)用,本題解題的關(guān)鍵是利用最小二乘法做出線性回歸方程的系數(shù),本題是一個近幾年可能出現(xiàn)在高考卷中的題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(n)=(2n+7)•3n+9,是否存在自然數(shù)m使得任意的n∈N*,都有m整除f(n)?若存在,求出最大的m值,并證明你的結(jié)論;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)(f(x)不恒為0)滿足:對一切實數(shù)x,y都有f(x)+f(y)=x(2y-1)
(1)求f(0),f(1)的值;
(2)求函數(shù)f(x)的解析式;
(3)若不等式f(x)>
3
2
x+a恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|2
a
-
b
|≤3,求
a
b
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)字2,3,5,6,7組成沒有重復(fù)數(shù)字的五位數(shù),使得每個五位數(shù)中的相鄰的兩個數(shù)都互質(zhì),則這樣的五位數(shù)的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=2an+1,且a1=1,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在楊輝三角中,斜線l的上方從1按箭頭方向可以構(gòu)成一個“鋸齒形”的數(shù)列{an}:1,3,3,4,6,5,10…,記其前n項和為Sn,則S41的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=cos2x+sinx,x∈[0,
π
2
]的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線3x+4y+m=0與圓(x-1)2+(y+2)2=4相切,則m=
 

查看答案和解析>>

同步練習(xí)冊答案