分析 (1)通過2Sn=nan+1與2Sn+1=(n+1)an+2作差、整理$\frac{{a}_{n+2}}{{a}_{n+1}}$=$\frac{n+2}{n+1}$,利用累乘法計算即得結(jié)論;
(2)通過${{a}_{2k}}^{2}$=ak•a3k+1即16k2=2k•2(3k+1)計算可知數(shù)列{bn}的首項為b1=a1=2、公比為$\frac{_{2}}{_{1}}$=$\frac{{a}_{2}}{{a}_{1}}$=2的等比數(shù)列,從而$\frac{{a}_{n}}{_{n}}$=$\frac{n}{{2}^{n-1}}$,利用錯位相減法、放縮即得結(jié)論;
(3)通過(2)、化簡可知λ<$\frac{12-2{S}_{n}}{n•_{n}•({T}_{n}-4)}$=1-$\frac{n+6}{{n}^{2}+2n}$,問題轉(zhuǎn)化為求$\frac{n+6}{{n}^{2}+2n}$的最小值,計算即得結(jié)論.
解答 (1)解:依題意,a2=2a1=4,
∵2Sn=nan+1,
∴2Sn+1=(n+1)an+2,
兩式相減得:2an+1=(n+1)an+2-nan+1,
整理得:$\frac{{a}_{n+2}}{{a}_{n+1}}$=$\frac{n+2}{n+1}$,
∴$\frac{{a}_{n}}{{a}_{n-1}}$•$\frac{{a}_{n-1}}{{a}_{n-2}}$•…•$\frac{{a}_{2}}{{a}_{1}}$=$\frac{n}{n-1}$•$\frac{n-1}{n-2}$•…•$\frac{2}{1}$,
∴數(shù)列{an}的通項公式an=n•a1=2n;
(2)證明:∵ak,a2k,a3k+1是等比數(shù)列{bn}的前3項,
∴${{a}_{2k}}^{2}$=ak•a3k+1,即16k2=2k•2(3k+1),
整理得:k2=k,
解得:k=1或k=0(舍),
∴數(shù)列{bn}的首項為b1=a1=2、公比為$\frac{_{2}}{_{1}}$=$\frac{{a}_{2}}{{a}_{1}}$=2的等比數(shù)列,
∴bn=2•2n-1=2n,
∴$\frac{{a}_{n}}{_{n}}$=$\frac{2n}{{2}^{n}}$=$\frac{n}{{2}^{n-1}}$,
∴Tn=$\frac{{a}_{1}}{_{1}}$+$\frac{{a}_{2}}{_{2}}$+$\frac{{a}_{3}}{_{3}}$+…+$\frac{{a}_{n}}{_{n}}$=1•$\frac{1}{{2}^{0}}$+2•$\frac{1}{{2}^{1}}$+…+n•$\frac{1}{{2}^{n-1}}$,
$\frac{1}{2}$Tn=1•$\frac{1}{{2}^{1}}$+2•$\frac{1}{{2}^{2}}$+…+(n-1)•$\frac{1}{{2}^{n-1}}$+n•$\frac{1}{{2}^{n}}$,
兩式相減得:$\frac{1}{2}$Tn=$\frac{1}{{2}^{0}}$+$\frac{1}{{2}^{1}}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$-n•$\frac{1}{{2}^{n}}$
=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-n•$\frac{1}{{2}^{n}}$
=2-$\frac{1}{{2}^{n-1}}$-n•$\frac{1}{{2}^{n}}$,
∴Tn=4-$\frac{1}{{2}^{n-2}}$-$\frac{n}{{2}^{n-1}}$<4;
(3)解:由(2)知Tn=4-$\frac{1}{{2}^{n-2}}$-$\frac{n}{{2}^{n-1}}$,
∵λnbnTn+2Sn>4λnbn+12,
∴λ<$\frac{12-2{S}_{n}}{n•_{n}•({T}_{n}-4)}$
=$\frac{12-n•2(n+1)}{n•{2}^{n}•(-\frac{1}{{2}^{n-2}}-\frac{n}{{2}^{n-1}})}$=-$\frac{12-2n(n+1)}{n(4+2n)}$=$\frac{{n}^{2}+2n-(n+6)}{{n}^{2}+2n}$=1-$\frac{n+6}{{n}^{2}+2n}$,
顯然$\frac{n+6}{{n}^{2}+2n}$隨著n的增大而減小,且$\underset{lim}{n→∞}$$\frac{n+6}{{n}^{2}+2n}$=0,
∴λ<1,
∴實數(shù)λ的取值范圍為:(-∞,1).
點評 本題考查數(shù)列的通項及前n項和,考查解不等式,考查運算求解能力,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 60° | B. | 60°或120° | C. | 120° | D. | 無解 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com