5.在△ABC中,角A,B,C所對的邊分別為a,b,c,A=2C,且$cosA=\frac{1}{3}$
(Ⅰ)求cosC的值;
(Ⅱ)若△ABC的面積為$5\sqrt{2}$,求sinB及邊b.

分析 (I)使用二倍角公式得出關于cosC的方程解出;
(II)使用和角公式計算sinB,利用正弦定理和面積公式計算b.

解答 解:(I)∵cosA=cos2C=2cos2C-1=$\frac{1}{3}$,∴cosC=±$\frac{\sqrt{6}}{3}$.
∵A=2C,∴C是銳角,
∴cosC=$\frac{\sqrt{6}}{3}$.
(II)∵cosA=$\frac{1}{3}$,cosC=$\frac{\sqrt{6}}{3}$,
∴sinA=$\frac{2\sqrt{2}}{3}$,sinC=$\frac{\sqrt{3}}{3}$.
∴sinB=sin(A+C)=sinAcosC+cosAsinC=$\frac{5\sqrt{3}}{9}$.
由正弦定理得$\frac{a}=\frac{sinA}{sinB}=\frac{2\sqrt{6}}{5}$.∴a=$\frac{2\sqrt{6}}{5}b$
∵S△ABC=$\frac{1}{2}absinC=\frac{1}{2}×\frac{2\sqrt{6}}{5}^{2}×\frac{\sqrt{3}}{3}$=5$\sqrt{2}$,
∴b=5.

點評 本題考查了三角函數(shù)的恒等變換,利用正弦定理解三角形,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,-3).若向量$\overrightarrow{c}$滿足$\overrightarrow{c}$⊥($\overrightarrow{a}$+$\overrightarrow$),且$\overrightarrow$∥($\overrightarrow{a}$-$\overrightarrow{c}$),則$\overrightarrow{c}$=( 。
A.$(\frac{7}{9},\frac{7}{3})$B.$(-\frac{7}{9},\frac{7}{3})$C.$(\frac{7}{9},-\frac{7}{3})$D.$(-\frac{7}{9},-\frac{7}{3})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.調查表明,市民對城市的居住滿意度與該城市環(huán)境質量、城市建設、物價與收入的滿意度有極強的相關性,現(xiàn)將這三項的滿意度指標分別記為x、y、z,并對它們進行量化:0表示不滿意,1表示基本滿意,2表示滿意,再用綜合指標ω=x+y+z的值評定居民對城市的居住滿意度等級:若ω≥4,則居住滿意度為一級;若2≤ω≤3,則居住滿意度為二級;若0≤ω≤1,則居住滿意度為三級,為了解某城市居民對該城市的居住滿意度,研究人員從此城市居民中隨機抽取10人進行調查,得到如下結果:
人員編號12345
(x,y,z)(1,1,2)(2,1,1)(2,2,2)(0,1,1)(1,2,1)
人員編號678910
(x,y,z)(1,2,2)(1,1,1)(1,2,2)(1,0,0)(1,1,1)
(Ⅰ)在這10名被調查者中任取兩人,求這兩人的居住滿意度指標z相同的概率;
(Ⅱ)從居住滿意度為一級的被調查者中隨機抽取一人,其綜合指標為m,從居住滿意度不是一級的被調查者中任取一人,其綜合指標為n,記隨機變量ξ=m-n,求隨機變量ξ的分布列及其數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.關于x的方程x3-x2-x+m=0,至少有兩個不相等的實數(shù)根,則m的最小值為$-\frac{5}{27}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=lnx
(Ⅰ)若函數(shù)F(x)=tf(x)與函數(shù)g(x)=x2-1在點x=1處有共同的切線l,求t的值;
(Ⅱ)證明:$|{f(x)-x}|>\frac{f(x)}{x}+\frac{1}{2}$;
(Ⅲ)若不等式mf(x)≥a+x對所有的$m∈[{0,\frac{3}{2}}],x∈[{1,{e^2}}]$都成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若雙曲線的頂點和焦點分別為橢圓$\frac{{x}^{2}}{2}$+y2=1的焦點和頂點,則該雙曲線方程為( 。
A.x2-y2=1B.$\frac{{x}^{2}}{2}$-y2=1C.x2-$\frac{{y}^{2}}{2}$=1D.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{2}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,四邊形ABCD是直角梯形,AB∥CD,∠ADC=∠DAB=90°,CD=2AB,PA⊥平面ABCD,PA=AB=AD,Q是PC的中點.
(1)求證:BQ∥平面PAD;
(2)探究在過BQ且與底面ABCD相交的平面中是否存在一個平面α,把四棱錐P-ABCD截成兩部分,使得其中一部分為一個四個面都是直角三角形的四面體,若存在,求平面PBC與平面α所成銳二面角的余弦值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若f(x)=xex-a有兩個零點,則實數(shù)a的取值范圍是( 。
A.($\frac{1}{e}$,+∞)B.(0,$\frac{1}{e}$)C.(-$\frac{1}{e}$,+∞)D.(-$\frac{1}{e}$,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設實數(shù)x,y滿足$\left\{\begin{array}{l}{2x+y-2≤0}\\{x-y+1≥0}\\{x-2y-1≤0}\end{array}\right.$,則$\frac{y-1}{x-1}$的最小值是-$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案