函數(shù)f(x)=
3
2
cos2x+
1
2
sin2x
(1)求函數(shù)f(x)最大值,及取得最大值時(shí)對(duì)應(yīng)的x值.
(2)若x∈[0,
π
4
],求函數(shù)f(x)的取值范圍.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,平面向量數(shù)量積的運(yùn)算
專題:三角函數(shù)的求值
分析:(1)利用三角函數(shù)的恒等變換化簡(jiǎn)函數(shù)的解析式為f(x)=sin(2x+
π
3
),由此可得f(x)取最大值及取得最大值時(shí)對(duì)應(yīng)的x值.
(2)由x∈[0,
π
4
],利用正弦函數(shù)的定義域和值域求得函數(shù)f(x)的取值范圍.
解答: 解:(1)∵函數(shù)f(x)=
3
2
cos2x+
1
2
sin2x=sin(2x+
π
3
),
當(dāng)2x+
π
3
=
π
2
+2kπ,即x=
π
12
+kπ(k∈Z)時(shí),f(x)取最大值1.
(2)∵x∈[0,
π
4
],∴2x+
π
3
∈[
π
3
,
6
],∴sin(2x+
π
3
)∈[
1
2
,1],
1
2
≤f(x)≤1.
點(diǎn)評(píng):本題主要考查三角函數(shù)的恒等變換及化簡(jiǎn)求值,正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},a1=1,an+1=an+ln(1+
1
n
)(n∈N*),求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,F(xiàn)1,F(xiàn)2分別為橢圓
x2
a2
+
y2
b2
=1的左、右焦點(diǎn),點(diǎn)P在橢圓上,△POF2是面積
3
的正三角形,求b2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一四棱錐P-ABCD的三視圖如圖所示,E是側(cè)棱PC上的動(dòng)點(diǎn).
(Ⅰ)求四棱錐P-ABCD的體積.
(Ⅱ)若點(diǎn)E為PC的中點(diǎn),AC∩BD=O,求證:EO∥平面PAD;
(Ⅲ)是否不論點(diǎn)E在何位置,都有BD⊥AE?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(Ⅰ)求證:PA∥平面EDB;
(Ⅱ)求二面角F-DE-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足an+1=2nan-an2+2,a1=1,n∈N*,求a2,a3,a4及an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,多面體ABCDS中,四邊形ABCD為矩形,SD⊥AD,SD⊥AB,且AB=2AD=2,M,N分別為AB,CD中點(diǎn).
(1)求異面直線SM,AN所成的角;
(2)若二面角A-SC-D大小為60°,求SD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}滿足a2a3a4=8,且a2+2,a3+4,a4+5構(gòu)成公差不為零的等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求證:數(shù)列{Sn+
1
2
}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,底面ABCD是矩形,PA=AD=4,AB=2,PB=2
5
,PD=4
2
.E是PD的中點(diǎn).
(1)PB∥平面ACE;
(2)求證:AE⊥平面PCD;
(3)求四面體PACE的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案