20.在△ABC中,已知a=2,c=$\sqrt{3}$,B=30°,求b及A.

分析 利用余弦定理、正弦定理,即可得出結(jié)論.

解答 解:∵△ABC中,a=2,c=$\sqrt{3}$,B=30°,
∴b=$\sqrt{4+3-2×2×\sqrt{3}×\frac{\sqrt{3}}{2}}$=1,
∵$\frac{a}{sinA}$=$\frac{sinB}$,
∴sinA=$\frac{asinB}$=1,
∴A=90°.

點評 本題考查余弦定理、正弦定理的運用,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.sin330°的值為(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.sin75°(sin40°cos35°+cos40°cos55°)=( 。
A.$\frac{\sqrt{6}-\sqrt{2}}{2}$B.$\frac{\sqrt{6}+\sqrt{2}}{2}$C.$\frac{2+\sqrt{3}}{4}$D.$\frac{2-\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=ax2+|x-2a|,其中a>0
(1)當a=1時,求f(x)在[0,+∞)上的最小值;
(2)若函數(shù)g(x)=f(x)-b在[0,+∞)上有兩個零點,求實數(shù)b的取值范圍(用a表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖所示,AF、DE分別是⊙O、⊙O1的直徑,AD與兩圓所在的平面均垂直,AD=8,BC是⊙O的直徑,AB=AC=6,OE∥AD.
(1)證明:EF∥面BCD;
(2)證明:面ACD⊥面CEF;
(3)求三棱錐O1-OBF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知α、β∈(0,$\frac{π}{2}$)且sin(α+2β)=$\frac{1}{3}$.若α+β=$\frac{2π}{3}$,求sinβ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的短軸長為2,離心率$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)T1,T2為橢圓上不同兩點,過T1,T2作橢圓切線交于點P,若T1P⊥T2P,求點P的軌跡E的方程;
(Ⅲ)若PT1交E于Q1,PT2交E與Q2,求△PQ1Q2面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.如圖,已知平面α⊥β,α∩β=l,A,B是直線l上的兩點,C、D是平面β內(nèi)的兩點,且DA⊥l,CB⊥l,AD=3,AB=6,CB=6,P是平面α上的一動點,且直線PD,PC與平面α所成角相等,則二面角P-BC-D的余弦值的最小值是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設(shè)Sn是等差數(shù)列{an}的前n項和,若a1=-16,公差為2.那么使Sn取得最小值的n等于( 。
A.8B.8或9C.9或10D.7

查看答案和解析>>

同步練習冊答案