分析 (1)利用反三角函數(shù)的定義求得arcsin$\frac{1}{2}$=$\frac{π}{6}$,arccos(-$\frac{\sqrt{3}}{2}$)]=$\frac{5π}{6}$,從而求得要求式子的值.
(2)利用利用反三角函數(shù)的定義、同角三角函數(shù)的基本關(guān)系求得sin[arccos(-$\frac{12}{13}$)]的值.
解答 解:(1)∵arcsin$\frac{1}{2}$=$\frac{π}{6}$,arccos(-$\frac{\sqrt{3}}{2}$)]=$\frac{5π}{6}$,
∴sin[arcsin$\frac{1}{2}$+arccos(-$\frac{\sqrt{3}}{2}$)]=sin($\frac{π}{6}$+$\frac{5π}{6}$)=sinπ=0.
(2)sin[arccos(-$\frac{12}{13}$)]=$\sqrt{{1-cos}^{2}(arccos(-\frac{12}{13})}$=$\sqrt{1{-(-\frac{12}{13})}^{2}}$=$\frac{5}{13}$.
點評 本題主要考查反三角函數(shù)的定義,同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com