6.求下列各式的值:
(1)sin[arcsin$\frac{1}{2}$+arccos(-$\frac{\sqrt{3}}{2}$)];
(2)sin[arccos(-$\frac{12}{13}$)].

分析 (1)利用反三角函數(shù)的定義求得arcsin$\frac{1}{2}$=$\frac{π}{6}$,arccos(-$\frac{\sqrt{3}}{2}$)]=$\frac{5π}{6}$,從而求得要求式子的值.
(2)利用利用反三角函數(shù)的定義、同角三角函數(shù)的基本關(guān)系求得sin[arccos(-$\frac{12}{13}$)]的值.

解答 解:(1)∵arcsin$\frac{1}{2}$=$\frac{π}{6}$,arccos(-$\frac{\sqrt{3}}{2}$)]=$\frac{5π}{6}$,
∴sin[arcsin$\frac{1}{2}$+arccos(-$\frac{\sqrt{3}}{2}$)]=sin($\frac{π}{6}$+$\frac{5π}{6}$)=sinπ=0.
(2)sin[arccos(-$\frac{12}{13}$)]=$\sqrt{{1-cos}^{2}(arccos(-\frac{12}{13})}$=$\sqrt{1{-(-\frac{12}{13})}^{2}}$=$\frac{5}{13}$.

點評 本題主要考查反三角函數(shù)的定義,同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知$\frac{sinB}{sinA+sinC}$=1-$\frac{sinC}{sinA+sinB}$,且b=5,acosC=-1.
(1)求角A;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x≥1\\ y≥0\\ x+y≤3\end{array}\right.$,則2x+y的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=m+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=$\frac{2\sqrt{3}}{\sqrt{1+2si{n}^{2}θ}}$,且曲線C的左焦點F在直線l上.
(1)求實數(shù)m和曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C交于A,B兩點,求$\frac{1}{|AF|}$+$\frac{1}{|BF|}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,M,N分別為PD,PC上的點,且$\frac{PM}{MD}$=$\frac{PN}{NC}$,求證:MN∥AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,已知直線l1:x+y-1=0,現(xiàn)將直線l1向上平移到直線l2的位置,若l2、l1和坐標(biāo)軸圍成的梯形面積為4,求l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的前n項和Sn=3n-2,判斷數(shù)列{an}是否是等比數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{3x}{2x+1}$,數(shù)列{an}的首項a1=t>0,且an+1=f(an),n∈N*
(1)若t=$\frac{3}{5}$,證明:{$\frac{1}{{a}_{n}}$-1}是等比數(shù)列并求出{an}的通項公式;
(2)若an+1>an對一切n∈N*都成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在直角坐標(biāo)系xOy中,點P(1,2)到拋物線E:y2=2px(p>0)的焦點的距離為$\sqrt{5}$,過拋物線E的焦點F作兩條相互垂直的直線分別交拋物線于A,B,C,D四點.
(1)求拋物線C的方程;
(2)求四邊形ACBD面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案