1.如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,M,N分別為PD,PC上的點(diǎn),且$\frac{PM}{MD}$=$\frac{PN}{NC}$,求證:MN∥AB.

分析 由已知條件推導(dǎo)出MN∥CD,AB∥CD,從而利用平行公式能證明MN∥AB.

解答 證明:在△ADC中,∵M(jìn),N分別為PD,PC上的點(diǎn),且$\frac{PM}{MD}$=$\frac{PN}{NC}$,
∴MN∥CD,
∵在四棱錐P-ABCD中,底面ABCD為平行四邊形,
∴AB∥CD,
∴MN∥AB.

點(diǎn)評(píng) 本題考查兩直線平行的證明,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖,給出的是計(jì)算$\frac{1}{2}$×$\frac{1}{4}$×$\frac{1}{6}$×…×$\frac{1}{2016}$的值的程序框圖,其中判斷框內(nèi)不能填入的是( 。
A.i≤2017?B.i<2018?C.i≤2015?D.i≤2016?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若b(tanA+tanB)=$\sqrt{2}$ctanB,BC邊的中線長(zhǎng)為1,則a的最小值為2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}中,a1=1,an+1=(1+$\frac{1}{{n}^{2}+n}$)an+$\frac{1}{{2}^{n}}$(n∈N*).
(1)證明:當(dāng)n≥2時(shí),an≥2;
(2)設(shè)bn=$\frac{{a}_{n+1}-{a}_{n}}{{a}_{n}}$,數(shù)列{bn}的前n項(xiàng)和是Sn,證明:Sn<$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,曲線C1:$\left\{\begin{array}{l}{x=acosφ}\\{y=bsinφ}\end{array}\right.$(φ為參數(shù)),其中a>b>0,以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=2cosθ,射線l:θ=α(ρ≥0),設(shè)射線l與曲線C1交于點(diǎn)P,當(dāng)α=0時(shí),射線l與曲線C2交于點(diǎn)O,Q,|PQ|=1;當(dāng)α=$\frac{π}{2}$時(shí),射線l與曲線C2交于點(diǎn)O,|OP|=$\sqrt{3}$.
(Ⅰ)求曲線C1的普通方程;
(Ⅱ)設(shè)直線l′:$\left\{\begin{array}{l}{x=-t}\\{y=\sqrt{3}t}\end{array}\right.$(t為參數(shù),t≠0)與曲線C2交于點(diǎn)R,若α=$\frac{π}{3}$,求△OPR的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.求下列各式的值:
(1)sin[arcsin$\frac{1}{2}$+arccos(-$\frac{\sqrt{3}}{2}$)];
(2)sin[arccos(-$\frac{12}{13}$)].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知向量$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$)且x∈[-$\frac{π}{2}$,$\frac{π}{2}$],求函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$-|$\overrightarrow{a}$+$\overrightarrow$|的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知A(-1,2),B(0,-2),且2|$\overrightarrow{AD}$|=3|$\overrightarrow{BD}$|,若點(diǎn)D在線段AB上,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(4-x),x<4}\\{1+{2}^{x-1},x≥4}\end{array}\right.$,則f(0)+f(log232)=( 。
A.19B.17C.15D.13

查看答案和解析>>

同步練習(xí)冊(cè)答案