【題目】已知直線與拋物線交于不同的兩點,為拋物線的焦點,為坐標原點,的重心,直線恒過點.

1)若,求直線斜率的取值范圍;

2)若是半橢圓上的動點,直線與拋物線交于不同的兩點,.時,求面積的取值范圍.

【答案】12

【解析】

1)設(shè),,聯(lián)立方程解得,,計算得到答案.

2)計算得到,,設(shè),,求得最大值,設(shè),求導(dǎo)得最小值得到答案.

1)設(shè),,,

直線與拋物線聯(lián)立:

所以,,

,得直線斜率,

因為,所以.

2)直線斜率,由.

設(shè)直線(其中),,,

直線與拋物線聯(lián)立:.

所以,

設(shè)為點到直線的距離,的面積記為.

由題知,故令,.

,當時,取最大值.

,設(shè),

.

時,,單調(diào)遞減;,單調(diào)遞增.

所以,即時,取最小值.

所以面積的取值范圍是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)討論的單調(diào)性;

(2)定義:對于函數(shù),若存在,使成立,則稱為函數(shù)的不動點.如果函數(shù)存在不動點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐中,平面

,。分別為線段上的點,且。

(1)證明:平面;

(2)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】造紙術(shù)是我國古代四大發(fā)明之一.紙張的規(guī)格是指紙張制成后,經(jīng)過修整切邊,裁成一定的尺寸.現(xiàn)在我國采用國際標準,規(guī)定以、、、、、等標記來表示紙張的幅面規(guī)格.復(fù)印紙幅面規(guī)格只采用系列和系列,其中系列的幅面規(guī)格為:①規(guī)格的紙張的幅寬(以表示)和長度(以表示)的比例關(guān)系為;②將紙張沿長度方向?qū)﹂_成兩等分,便成為規(guī)格.紙張沿長度方向?qū)﹂_成兩等分,便成為規(guī)格,,如此對開至規(guī)格.現(xiàn)有、、、紙各一張.紙的面積為,則這9張紙的面積之和等于______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,,.

(Ⅰ)求證:;

(Ⅱ)若平面平面,且直線與平面所成角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是兩條異面直線,直線都垂直,則下列說法正確的是( )

A. 平面,則

B. 平面,則,

C. 存在平面,使得,,

D. 存在平面,使得,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù))在上有兩個零點,則的范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中,的中點,.

(Ⅰ)求證:平面

(Ⅱ)異面直線所成角的余弦值為,求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左頂點為,焦距為2

1)求橢圓的標準方程;

2)過點的直線與橢圓的另一個交點為點,與圓的另一個交點為點,是否存在直線使得?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案