【題目】教材曾有介紹:圓上的點(diǎn)處的切線方程為.我們將其結(jié)論推廣:橢圓上的點(diǎn)處的切線方程為,在解本題時(shí)可以直接應(yīng)用.已知,直線與橢圓有且只有一個(gè)公共點(diǎn).
(1)求的值
(2)設(shè)為坐標(biāo)原點(diǎn),過橢圓上的兩點(diǎn)分別作該橢圓的兩條切線,且與交于點(diǎn).當(dāng)變化時(shí),求面積的最大值.
【答案】(1);(2)
【解析】
(1)聯(lián)立直線與橢圓方程,根據(jù)相切利用判別式即可求解;
(2)求出直線的方程,求出弦長(zhǎng)和點(diǎn)到直線的距離,表示出的面積,再求最大值.
(1)將直線代入橢圓方程,
可得:,
由直線和橢圓相切:,,
解得:;
(2)橢圓方程,
設(shè),
則兩點(diǎn)處的切線分別為:
,,兩條直線交于點(diǎn),
則,,即兩點(diǎn)在直線上,
所以直線的方程為,
所以到直線的距離,
由得:,是方程的兩根,
,
,
所以的面積:
,
根據(jù)基本不等式,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,
所以的面積,
當(dāng)且僅當(dāng)時(shí)面積取得最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列滿足,,為非零常數(shù).
(1)是否存在實(shí)數(shù),使得數(shù)列成為等差數(shù)列或等比數(shù)列,若存在,找出所有的,及對(duì)應(yīng)的通項(xiàng)公式;若不存在,說明理由;
(2)當(dāng)時(shí),記,證明:數(shù)列是等比數(shù)列;
(3)求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程為,直線,直線 .以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系.
(1)求直線,的直角坐標(biāo)方程以及曲線的參數(shù)方程;
(2)已知直線與曲線交于兩點(diǎn),直線與曲線交于兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:上任意一點(diǎn)到其焦點(diǎn)的距離的最小值為1.,為拋物線上的兩動(dòng)點(diǎn)(、不重合且均異于原點(diǎn)),為坐標(biāo)原點(diǎn),直線、的傾斜角分別為,.
(1)求拋物線方程;
(2)若,求證直線過定點(diǎn);
(3)若(為定值),探求直線是否過定點(diǎn),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)戶計(jì)劃種植萵筍和西紅柿,種植面積不超過畝,投入資金不超過萬元,假設(shè)種植萵筍和西紅柿的產(chǎn)量、成本和售價(jià)如下表:
年產(chǎn)量/畝 | 年種植成本/畝 | 每噸售價(jià) | |
萵筍 | 5噸 | 1萬元 | 0.5萬元 |
西紅柿 | 4.5噸 | 0.5萬元 | 0.4萬元 |
那么,該農(nóng)戶一年種植總利潤(rùn)(總利潤(rùn)=總銷售收入-總種植成本)的最大值為____萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,過點(diǎn)作斜率為的直線與拋物線交于不同的兩點(diǎn),.
(1)求的取值范圍;
(2)若為直角三角形,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)一動(dòng)點(diǎn)()到點(diǎn)的距離與點(diǎn)到軸的距離的差等于1,
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過點(diǎn)的直線與軌跡相交于不同于坐標(biāo)原點(diǎn)的兩點(diǎn),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知城市周邊有兩個(gè)小鎮(zhèn)、,其中鄉(xiāng)鎮(zhèn)位于城市的正東方處,鄉(xiāng)鎮(zhèn)與城市相距,與夾角的正切值為2,為方便交通,現(xiàn)準(zhǔn)備建設(shè)一條經(jīng)過城市的公路,使鄉(xiāng)鎮(zhèn)和分別位于的兩側(cè),過和建設(shè)兩條垂直的公路和,分別與公路交匯于、兩點(diǎn),以為原點(diǎn),所在直線為軸,建立如圖所示的平面直角坐標(biāo)系.
(1)當(dāng)兩個(gè)交匯點(diǎn)、重合,試確定此時(shí)路段長(zhǎng)度;
(2)當(dāng),計(jì)算此時(shí)兩個(gè)交匯點(diǎn)、到城市的距離之比;
(3)若要求兩個(gè)交匯點(diǎn)、的距離不超過,求正切值的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com