5.在某次聯(lián)考數(shù)學(xué)測(cè)試中,學(xué)生成績(jī)?chǔ)畏䦶恼龖B(tài)分布(100,σ2),(σ>0),若ξ在(80,120)內(nèi)的概率為0.8,則落在(0,80)內(nèi)的概率為( 。
A.0.05B.0.1C.0.15D.0.2

分析 根據(jù)ξ服從正態(tài)分布N(100,σ2),得到曲線的對(duì)稱(chēng)軸是直線x=100,利用ξ在(80,120)內(nèi)取值的概率為0.8,即可求得結(jié)論.

解答 解:∵ξ服從正態(tài)分布N(100,σ2
∴曲線的對(duì)稱(chēng)軸是直線x=100,
∵ξ在(80,120)內(nèi)取值的概率為0.8,
∴ξ在(0,100)內(nèi)取值的概率為0.5,
∴ξ在(0,80)內(nèi)取值的概率為0.5-0.4=0.1.
故選:B.

點(diǎn)評(píng) 本題考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,主要考查正態(tài)曲線的對(duì)稱(chēng)性,是一個(gè)基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.執(zhí)行右邊的偽代碼后,輸出的結(jié)果是28.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知直線kx+2y+1=0,其方向向量為(2,-1),則k的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y+2≤0}\\{x+y-7≤0}\\{x≥1}\end{array}\right.$,則$\frac{y}{x}$的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知點(diǎn)A(-1,1)、B(0,3)、C(3,4),則向量$\overrightarrow{AB}$在$\overrightarrow{AC}$方向上的投影為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.定義運(yùn)算(a,b)※(c,d)=ac-bd,則符合條件(z,1+2i)※(1+i,1-i)=0的復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)在( 。
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)函數(shù)f(x)=ax2+1nx,g(x)=x2+b,已知它們的圖象在x=1處有相同的切線.
(1)求函數(shù)f(x)和g(z)的解析式;
(2)若函數(shù)F(x)=f(x)-m[g(x)+x]在區(qū)間[2,3]上不單調(diào),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)f(x)=ex-x2+a,x∈R的圖象在點(diǎn)x=0處的切線方程y=bx.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若f(x)>kx對(duì)任意的x∈(0,+∞)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,在四棱錐S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB=2,點(diǎn)M是SD的中點(diǎn),AN⊥SC,且交SC于點(diǎn)N.
(1)求證:直線SC⊥平面AMN;
(2)求點(diǎn)N到平面ACM的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案