【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓 的左焦點為,右頂點為,上頂點為.
(1)已知橢圓的離心率為,線段中點的橫坐標(biāo)為,求橢圓的標(biāo)準(zhǔn)方程;
(2)已知△外接圓的圓心在直線上,求橢圓的離心率的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),等腰梯形,,,,,分別是的兩個三等分點,若把等腰梯形沿虛線、折起,使得點和點重合,記為點, 如圖(2).
(1)求證:平面平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)P是橢圓上一點,M,N分別是兩圓(x+4)2+y2=1和(x-4)2+y2=1上的點,則|PM|+|PN|的最小值、最大值分別為 ( )
A. 9,12 B. 8,11 C. 10,12 D. 8,12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為.數(shù)列滿足,.
(1)若,且,求正整數(shù)的值;
(2)若數(shù)列,均是等差數(shù)列,求的取值范圍;
(3)若數(shù)列是等比數(shù)列,公比為,且,是否存在正整數(shù),使,,成等差數(shù)列,若存在,求出一個的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市政府為了節(jié)約生活用電,計劃在本市試行居民生活用電定額管理,即確定一戶居民月用電量標(biāo)準(zhǔn)a,用電量不超過a的部分按平價收費,超出a的部分按議價收費為此,政府調(diào)查了100戶居民的月平均用電量單位:度,以,,,,,分組的頻率分布直方圖如圖所示.
根據(jù)頻率分布直方圖的數(shù)據(jù),求直方圖中x的值并估計該市每戶居民月平均用電量的值;
用頻率估計概率,利用的結(jié)果,假設(shè)該市每戶居民月平均用電量X服從正態(tài)分布
估計該市居民月平均用電量介于度之間的概率;
利用的結(jié)論,從該市所有居民中隨機抽取3戶,記月平均用電量介于度之間的戶數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知兩個變量線性相關(guān),若它們的相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近于1.
(2)線性回歸直線必過點;
(3)對于分類變量A與B的隨機變量,越大說明“A與B有關(guān)系”的可信度越大.
(4)在刻畫回歸模型的擬合效果時,殘差平方和越小,相關(guān)指數(shù)的值越大,說明擬合的效果越好.
(5)根據(jù)最小二乘法由一組樣本點,求得的回歸方程是,對所有的解釋變量,的值一定與有誤差.
以上命題正確的序號為____________.
查看答案和解析>>
科目:
來源: 題型:【題目】如圖,在底面是菱形的四棱錐中,,,,點在上,且.
(1)證明:面;
(2)在棱上是否存在一點,使三棱錐是正三棱錐?證明你的結(jié)論.
(3)求以為棱,與為面的二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在時取得極值,求實數(shù)的值;
(Ⅱ)當(dāng)時,求零點的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com