【題目】如圖,橢圓的左、右焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為,若, 與軸垂直,且.
(1)求橢圓方程;
(2)過(guò)點(diǎn)且不垂直于坐標(biāo)軸的直線與橢圓交于兩點(diǎn),已知點(diǎn),當(dāng)時(shí),求滿足的直線的斜率的取值范圍.
【答案】(1) (2)
【解析】試題分析:(1)由兩條直線平行可得,由點(diǎn)在曲線上可得其縱坐標(biāo)為,由兩者相等可得,結(jié)合,解出方程組即可;(2)設(shè)直線的方程為: , , ,與橢圓方程聯(lián)立利用根與系數(shù)的關(guān)系得到和,線段的垂直平分線方程為,求出與軸的交,由交點(diǎn)橫坐標(biāo)列出不等式,解出即可得出結(jié)果.
試題解析:(1)設(shè),由軸, 知, ,∴,
又由得,∴,∴,
又, ,
∴, ,∴橢圓方程為.
(2)設(shè), ,直線的方程為: ,
聯(lián)立,得, ,
設(shè)線段的垂直平分線方程為: .
令,得,
由題意知, 為線段的垂直平分線與軸的交點(diǎn),所以,且,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,焦距為2,離心率為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)作圓的切線,切點(diǎn)分別為,直線與軸交于點(diǎn),過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形為矩形,四邊形為直角梯形,,,,,,.
(1)求證:;
(2)求證:平面;
(3)若二面角的大小為,求直線與平面所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,則函數(shù)g(x)=f(f(x))﹣2在區(qū)間(﹣1,3]上的零點(diǎn)個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上有兩個(gè)零點(diǎn),求的取值范圍;
(2)設(shè),當(dāng)時(shí), ,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是實(shí)數(shù),已知奇函數(shù),
(1)求的值;
(2)證明函數(shù)在R上是增函數(shù);
(3)若對(duì)任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0有解,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x),且f(x+2)為偶函數(shù),f(4)=1,則不等式f(x)<ex的解集為( )
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(4,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com