分析 分析使不等式$\sqrt{x-3}$+$\sqrt{x-2}$>$\sqrt{x-4}$+$\sqrt{x-1}$成立的充分條件,一直分析到使不等式成立的充分條件顯然具備,從而不等式得證.
解答 證明:當(dāng)x≥4時
要證$\sqrt{x-3}+\sqrt{x-2}>\sqrt{x-4}+\sqrt{x-1}$
只需證${(\sqrt{x-3}+\sqrt{x-2})^2}>{(\sqrt{x-4}+\sqrt{x-1})^2}$------------(2分)
只需證$x-3+2\sqrt{(x-3)(x-2)}+x-2>x-4+2\sqrt{(x-4)(x-1)}+x-1$-----------(5分)
即證$\sqrt{(x-3)(x-2)}>\sqrt{(x-4)(x-1)}$
只需證x2-5x+6>x2-5x+4
即證6>4
顯然上式成立,------------------------(9分)
所以原不等式成立,即$\sqrt{x-3}-\sqrt{x-1}>\sqrt{x-4}-\sqrt{x-2}$------------(10分)
點(diǎn)評 本題主要考查利用分析法證明不等式,利用用分析法證明不等式的關(guān)鍵是尋找使不等式成立的充分條件,直到使不等式成立的充分條件已經(jīng)顯然具備為止,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 14 | C. | 19 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 2$\sqrt{3}$ | C. | $\frac{7\sqrt{2}}{3}$ | D. | $\frac{7\sqrt{2}}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\sqrt{2}$,+∞) | B. | (1,$\sqrt{2}$] | C. | (1,$\sqrt{3}$) | D. | ($\sqrt{2}$,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (-1,0) | C. | (0,$\sqrt{2}$) | D. | (-$\sqrt{2}$,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com