11.函數(shù)y=3sin(2x+$\frac{π}{4}$)的圖象向左平移φ(0<φ<$\frac{π}{2}$)個(gè)單位后,所得到函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱,則φ=$\frac{3π}{8}$.

分析 利用圖象平移規(guī)律得出平移后的函數(shù)解析式,根據(jù)新函數(shù)為奇函數(shù)和誘導(dǎo)公式列方程解出φ.

解答 解:函數(shù)y=3sin(2x+$\frac{π}{4}$)的圖象向左平移φ(0<φ<$\frac{π}{2}$)個(gè)單位后,得到函數(shù)解析式為y=3sin[2(x+φ)+$\frac{π}{4}$]=3sin(2x+2φ+$\frac{π}{4}$),
∵新函數(shù)的圖形關(guān)于原點(diǎn)對(duì)稱,∴y=3sin(2x+2φ+$\frac{π}{4}$)是奇函數(shù),
∴2φ+$\frac{π}{4}$=π+2kπ,解得φ=$\frac{3π}{8}+kπ$,k∈Z.
∵0<φ<$\frac{π}{2}$,∴φ=$\frac{3π}{8}$.
故答案為:$\frac{3π}{8}$.

點(diǎn)評(píng) 本題考查了正弦函數(shù)的性質(zhì),函數(shù)圖象的變換,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知F1,F(xiàn)2分別是雙曲線3x2-y2=3a2(a>0)的左,右焦點(diǎn),P是拋物線y2=8ax與雙曲線的一個(gè)交點(diǎn),若|PF1|+|PF2|=12,則拋物線的準(zhǔn)線方程為x=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=x+alnx,g(x)=f(x)+$\frac{1}{2}{x^2}$-bx.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)在x=1處的切線與直線x+2y=0垂直,求a的值;
(3)在(2)的條件下,設(shè)x1,x2(x1<x2)是函數(shù)g(x)的兩個(gè)極值點(diǎn),記t=$\frac{x_1}{x_2}$,若b≥$\frac{13}{3}$,t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的左右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)焦點(diǎn)F1的直線交橢圓于A,B兩點(diǎn),若△ABF2的內(nèi)切圓的面積為4π,設(shè)A,B的兩點(diǎn)坐標(biāo)分別為A(x1,y1),B(x2,y2),則|y1-y2|值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)過(guò)點(diǎn)P(1,$\frac{3}{2}$),其離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的右頂點(diǎn)為A,直線l交C于兩點(diǎn)M、N(異于點(diǎn)A),且AM⊥AN,證明直線l過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,且過(guò)點(diǎn)M(-2,0).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l:x=ky+1與橢圓C相交于A(x1,y1),B(x2,y2)兩點(diǎn),連接MA,MB交直線x=4于P,Q兩點(diǎn),yP,yQ分別為P、Q的縱坐標(biāo),求證:$\frac{1}{{y}_{1}}$+$\frac{1}{{y}_{2}}$=$\frac{1}{{y}_{P}}$+$\frac{1}{{y}_{Q}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.用分析法證明:當(dāng)x≥4時(shí),$\sqrt{x-3}$+$\sqrt{x-2}$>$\sqrt{x-4}$+$\sqrt{x-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知F1,F(xiàn)2分別為雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦點(diǎn),過(guò)F1的直線l與雙曲線C的左右兩支分別交于A,B兩點(diǎn),若|AB|:|BF2|:|AF2|=4:3:5,則雙曲線的離心率為( 。
A.$\sqrt{13}$B.$\sqrt{15}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.把十進(jìn)制的數(shù)101轉(zhuǎn)化為四進(jìn)制數(shù),得( 。
A.1121(4)B.1211(4)C.1021(4)D.1201(4)

查看答案和解析>>

同步練習(xí)冊(cè)答案