10.如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上的動點(diǎn),PA垂直于⊙O所在的平面ABC
(I)證明:平面PAC丄平面PBC;
(Ⅱ)設(shè)PA=$\sqrt{3}$,AC=1,求三棱錐A-PBC的高.

分析 (1)由直徑性質(zhì)得BC⊥AC,由線面垂直得PA⊥BC,由此能證明平面PAC⊥平面PBC.
(2)過點(diǎn)A作PC的垂線,垂足為D,由已知得AD為三棱錐A-PBC的高,由此能求出結(jié)果.

解答 證明:(1)∵AB是⊙O的直徑,點(diǎn)C是⊙O上的動點(diǎn)
∴∠ACB=90°,即BC⊥AC,
又∵PA⊥⊙O所在平面,BC?平面⊙O,
∴PA⊥BC,∴PA∩AC=A,
∴BC⊥平面PCB,∴平面PAC⊥平面PBC.
解:(2)由(1)的結(jié)論平面PAC⊥平面PBC,平面PAC∩平面PBC=PC,
∴過點(diǎn)A作PC的垂線,垂足為D,則AD為三棱錐A-PBC的高,
在Rt△PAC中,PA=$\sqrt{3}$,AC=1,∴PC=2,
由AD×PC=PA×AC,得AD=$\frac{PA×AC}{PC}=\frac{1×\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$.
∴三棱錐A-PBC的高為$\frac{\sqrt{3}}{2}$.

點(diǎn)評 本題考查面面垂直的證明,考查三棱錐的高的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知在關(guān)于x的不等式loga(x2-4)>loga(6x-13a)(0<a<1)的解集中,有且只有兩個整數(shù)解,則實數(shù)a的取值范圍是[$\frac{9}{13}$,$\frac{12}{13}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在棱長為a的正方體ABCD-A1B1C1D1中,E、F分別是棱AB和BC的中點(diǎn).
(1)求二面角B-FB1-E的大小,
(2)求點(diǎn)D到平面B1EF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.有兩塊直角三角板:一塊三角板的兩條直角邊的長分別為1,$\sqrt{3}$;另一塊三角板的兩條直角邊的長均為$\sqrt{3}$,已知這兩塊三角板有兩對頂點(diǎn)重合,且構(gòu)成90°的二面角,則不重合的兩個頂點(diǎn)間的距離等于2或$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D-ABC,如圖2所示.
(1)求證:BC⊥平面ACD;
(2)求點(diǎn)C到平面ABD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在正方體ABCD-A1B1C1D1中,P為對角線BD1上靠近B的三等分點(diǎn),P到各頂點(diǎn)的距離的不同取值有(  )
A.3個B.4個C.5個D.6個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.將3個半徑為1的球和一個半徑為$\sqrt{2}-1$的球疊為兩層放在桌面上,上層只放一個較小的球,四個球兩兩相切,那么上層小球的最高點(diǎn)到桌面的距離是(  )
A.$\frac{{3\sqrt{2}+\sqrt{6}}}{3}$B.$\frac{{\sqrt{3}+2\sqrt{6}}}{3}$C.$\frac{{\sqrt{2}+2\sqrt{6}}}{3}$D.$\frac{{2\sqrt{2}+\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某隧道設(shè)計為雙向四車道,車道總寬20米,要求通行車輛限高4.5米,隧道口截面的拱線近似地看成拋物線形狀的一部分,如圖所示建立平面直角坐標(biāo)系xOy.
(1)若最大拱高h(yuǎn)為6米,則隧道設(shè)計的拱寬l是多少?
(2)為了使施工的土方工程量最小,需隧道口截面面積最。F(xiàn)隧道口的最大拱高h(yuǎn)不小于6米,則應(yīng)如何設(shè)計拱高h(yuǎn)和拱寬l,使得隧道口截面面積最?(隧道口截面面積公式為S=$\frac{2}{3}$lh)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.定義2×2矩陣$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3,若f(x)=$|\begin{array}{l}{co{s}^{2}x-si{n}^{2}x}&{\sqrt{3}}\\{cos(\frac{π}{2}+2x)}&{1}\end{array}|$,則f(x)的圖象向右平移$\frac{π}{3}$個單位得到函數(shù)g(x),則函數(shù)g(x)的解析式為( 。
A.圖象關(guān)于(π,0)中心對稱B.圖象關(guān)于直線x=$\frac{π}{2}$對稱
C.g(x)是周期為π的奇函數(shù)D.在區(qū)間[-$\frac{π}{6}$,0]上單調(diào)遞增

查看答案和解析>>

同步練習(xí)冊答案