5.y=$\sqrt{3}$cos(x+$\frac{π}{6}$)的最大值為$\sqrt{3}$.

分析 由條件利用余弦函數(shù)的最大值,求得函數(shù)y的最大值.

解答 解:∵cos(x+$\frac{π}{6}$)的最大值為1,∴y=$\sqrt{3}$cos(x+$\frac{π}{6}$)的最大值為$\sqrt{3}$,
故答案為:$\sqrt{3}$.

點(diǎn)評(píng) 本題主要考查余弦函數(shù)的最大值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,若a=($\sqrt{3}$-1)b,C=30°,則A=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$過點(diǎn)$P(2,\sqrt{3})$,且它的離心率為$\frac{1}{2}$.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓(x-1)2+y2=1相切的直線l:y=kx+t(k∈R,t∈R)交橢圓E于M、N兩點(diǎn),若橢圓E上一點(diǎn)C滿足$\overrightarrow{OM}+\overrightarrow{ON}=λ\overrightarrow{OC}$(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知圓O的直徑AB=4,定直線l到圓心的距離為6,且直線l⊥直線AB.點(diǎn)P是圓上異于A、B的任意一點(diǎn),直線PA、PB分別交l于M、N點(diǎn).如圖,以AB為x軸,圓心O為原點(diǎn)建立平面直角坐標(biāo)系xOy.
(1)若∠PAB=30°,求以MN為直徑的圓的方程;
(2)當(dāng)點(diǎn)P變化時(shí),求證:以MN為直徑的圓必過圓O內(nèi)的一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=log2(2x)•log2(4x),且$\frac{1}{4}$≤x≤4.
(1)求f($\sqrt{2}$)的值;
(2)若令t=log2x,求實(shí)數(shù)t的取值范圍;
(3)將y=f(x)表示成以t(t=log2x)為自變量的函數(shù),并由此求函數(shù)y=f(x)的最小值與最大值及與之對(duì)應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列語句是真命題的是( 。
A.x>1B.若a>b,則a2>ab
C.y=sinx是奇函數(shù)嗎?D.若a-2是無理數(shù),則a是無理數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知cosα=$\frac{1}{3}$,則sin($\frac{π}{2}$+α)=( 。
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.-$\frac{2\sqrt{2}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)=\sqrt{3}sinxcosx-{cos^2}x+\frac{1}{2}\;(x∈R)$.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)函數(shù)f(x)的圖象上所有點(diǎn)的橫坐標(biāo)擴(kuò)大到原來的2倍,再向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,得g(x)的圖象,求函數(shù)y=g(x)在x∈[0,π]上的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)P是雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{9}$=1上一點(diǎn),該雙曲線的一條漸近線方程是3x+4y=0,F(xiàn)1,F(xiàn)2分別是雙曲線的左、右焦點(diǎn),若|PF1|=10,則|PF2|等于18或2.

查看答案和解析>>

同步練習(xí)冊(cè)答案