設(shè)復(fù)數(shù)z滿足z(1+i)=2i(i為虛數(shù)單位),則復(fù)數(shù)z的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,復(fù)數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:把已知的等式變形,然后直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求出
.
z
,得到其坐標(biāo)得答案.
解答: 解:由z(1+i)=2i,得
z=
2i
1+i
=1+i
,
.
z
=1-i
,對(duì)應(yīng)的點(diǎn)為(1,-1)在第四象限.
故選:D.
點(diǎn)評(píng):本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是奇函數(shù),g(x)是偶函數(shù),并且f(x)-g(x)=x2-x,則f(x)的表達(dá)式為:f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|1≤2x<8,x∈N*},則集合B={x-y|x∈A,y∈A}中元素的個(gè)數(shù)是(  )
A、1B、3C、5D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下是定義域?yàn)镽的四個(gè)函數(shù),奇函數(shù)的為(  )
A、y=x3
B、y=2x
C、y=x2+1
D、y=
x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x||x|≤2,x∈R},B=y|y=-x2,x∈R},則A∩B=( 。
A、{x|0≤x≤2}
B、{x|x≤2}
C、{x|-2≤x≤0}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lg(x-1)+
3-x
的定義域是( 。
A、(1,3)
B、[1,3]
C、(1,3]
D、[1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1,0≤x≤1
x-1,x<0或x>1
,若f(f(x))=1成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱臺(tái)ABC-A′B′C′的兩底面是等邊三角形且邊長之比是2:1,連接A′C,B′C,A′B把棱臺(tái)分為三個(gè)棱錐,則有
VC′-A′B′C:VB′-A′BC:VA′-ABC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=lg(1-2sinx)的定義域是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案