【題目】已知在函數(shù) 的所有切線中,有且僅有一條切線l與直線y=x垂直.
(1)求a的值和切線l的方程;
(2)設(shè)曲線y=f(x)在任一點(diǎn)處的切線傾斜角為α,求α的取值范圍.

【答案】
(1)解:f′(x)=x2﹣4x+a,由題意知,方程x2﹣4x+a=﹣1有兩個(gè)相等的根,

∴△=(﹣4)2﹣4(a+1)=0,∴a=3

此時(shí)方程x2﹣4x+a=﹣1化為x2﹣4x+4=0,得x=2,

解得切點(diǎn)的縱坐標(biāo)為

∴切線l的方程為 ,即3x+3y﹣8=0


(2)解:設(shè)曲線y=f(x)上任一點(diǎn)(x,y)處的切線的斜率為k(由題意知k存在),

則由(1)知k=x2﹣4x+3=(x﹣2)2﹣1≥﹣1,

∴由正切函數(shù)的單調(diào)性可得α的取值范圍為


【解析】(1)f′(x)=x2﹣4x+a,由題意知,方程x2﹣4x+a=﹣1有兩個(gè)相等的根,即可求a的值;求出切點(diǎn)坐標(biāo),可得切線l的方程;(2)由(1)知k=x2﹣4x+3=(x﹣2)2﹣1≥﹣1,即可求α的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形, ,點(diǎn)的中點(diǎn).

(1)證明:

(2)設(shè)點(diǎn)在線段上,且平面,若平面平面,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)=x3﹣12x+8在區(qū)間[﹣3,3]上的最大值與最小值分別為M,m,則M﹣m的值為(
A.16
B.12
C.32
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),( )為定義域上的增函數(shù), 是函數(shù)的導(dǎo)數(shù),且的最小值小于等于0.

(1)求的值;

(2)設(shè)函數(shù),且,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)、兩種產(chǎn)品,且產(chǎn)品的質(zhì)量用質(zhì)量指標(biāo)來衡量,質(zhì)量指標(biāo)越大表明產(chǎn)品質(zhì)量越好.現(xiàn)按質(zhì)量指標(biāo)劃分:質(zhì)量指標(biāo)大于或等于82為一等品,質(zhì)量指標(biāo)小于82為二等品.現(xiàn)隨機(jī)抽取這兩種產(chǎn)品各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如表:

測(cè)試指標(biāo)

產(chǎn)品

8

12

40

32

8

產(chǎn)品

7

18

40

29

6

(Ⅰ)請(qǐng)估計(jì)產(chǎn)品的一等獎(jiǎng);

(Ⅱ)已知每件產(chǎn)品的利潤(rùn)(單位:元)與質(zhì)量指標(biāo)值的關(guān)系式為:

已知每件產(chǎn)品的利潤(rùn)(單位:元)與質(zhì)量指標(biāo)值的關(guān)系式為:

(i)分別估計(jì)生產(chǎn)一件產(chǎn)品,一件產(chǎn)品的利潤(rùn)大于0的概率;

(ii)請(qǐng)問生產(chǎn)產(chǎn)品, 產(chǎn)品各100件,哪一種產(chǎn)品的平均利潤(rùn)比較高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x﹣ ,且f(2)=
(1)求實(shí)數(shù)a的值;
(2)判斷該函數(shù)的奇偶性;
(3)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=2x 的零點(diǎn)個(gè)數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓C1 和圓C2:x2+y2=b2 , 已知圓C2將橢圓C1的長(zhǎng)軸三等分,且圓C2的面積為π.橢圓C1的下頂點(diǎn)為E,過坐標(biāo)原點(diǎn)O且與坐標(biāo)軸不重合的任意直線l與圓C2相交于點(diǎn)A,B,直線EA,EB與橢圓C1的另一個(gè)交點(diǎn)分別是點(diǎn)P,M.
(I)求橢圓C1的方程;
(Ⅱ)求△EPM面積最大時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的極值;

2)若時(shí),函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的值;

3,對(duì)于區(qū)間上的任意兩個(gè)不相等的實(shí)數(shù),都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案